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SOME RESULTS RELATED TO NON-DEGENERATE LINEAR

TRANSFORMATIONS ON EUCLIDEAN JORDAN ALGEBRAS

K. Saravanan∗, V. Piramanantham, and R. Theivaraman

Abstract. This article deals with non-degenerate linear transformations on Eu-
clidean Jordan algebras. First, we study non-degenerate for cone invariant, copos-
itive, Lyapunov-like, and relaxation transformations. Further, we study that the
non-degenerate is invariant under principal pivotal transformations and algebraic
automorphisms.

1. Introduction

A matrix A ∈ Rn×n is non-degenerate if every principal minors of A is nonzero.
It is equivalent to say that u ∗ (Au) = 0 implies u = 0 (see [8]). The class of non-
degenerate matrix has been well studied in literature due to wide applications in
linear complementarity problems (see, for example [7]). From given element q ∈ Rn

and matrix A ∈ Rn×n, the problem is to find an element u ∈ Rn such that

u ≥ 0, v = Au+ q ≥ 0, 〈u, v〉 = 0.

This problem is called the standard linear complementarity problem, LCP(A, q). The
solution set in the standard linear complementarity problem [1] is finite if and only
if the corresponding matrix is non-degenerate. Different types of matrices have been
studied for the existence and uniqueness of solutions of the linear complementarity
problem in the literature (see [1]). In the literature linear complementarity problem
associated with Euclidean Jordan algebra over a symmetric cone has been studied for
the past fifteen years (see [3, 5, 6]).

In this article, we continue our study in the circumstance of Euclidean Jordan alge-
bras about the non-degenerate linear transformations. We focus on copositive trans-
formations, Lyapunav-like transformations, automorphism invariance and relaxation
transformations in particular. Especially, our contributions of this paper include:

1. Showing that strict copositivity, R0 property and cone non-degenerate transfor-
mations are equivalent for cone invariant transformations.

2. Proving that cone non-degenerate transformations are equivalent to non-degenerate
transformations for Lyapunov-like transformation.
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3. Studying that the non-degenerate for some special linear transformations.

A summary of the paper is provided here. Section 2 provides a quick overview of
Euclidean Jordan algebras. Section 3 examines the cone non-degenerate for copositive
transformations, cone invariant transformations, and the Lyapunov-like transforma-
tion. In section 4, we discuss some special linear transformation about non-degenerate.

2. Preliminaries

We review a few Euclidean Jordan algebraic notions, properties, and results within
this section. Most of these can be found in [3, 4, 6].

Definition 2.1. A Finite dimensional inner product space (V, 〈., .〉) over R is said
to be a Euclidean Jordan algebra if there is a bilinear map from the cartisian product
V × V into V represented by (u, v) 7−→ u ◦ v such that it satisfies the requirements
given below:

(i) u ◦ v = v ◦ u for all u, v ∈ V .
(ii) u ◦ (u2 ◦ v) = u2 ◦ (u ◦ v) for all u, v ∈ V .
(iii) 〈u ◦ v, w〉 = 〈v, u ◦ w〉 for all u, v, w ∈ V .

Remark 2.2. Suppose, if there exist an element e ∈ V such that u ◦ e = u for
all u ∈ V , then we say that e is an unit element of V . In the above definition,
the product u ◦ v is referred to as Jordan product in V . In V , the set of squares
K := {u ◦ u : u ∈ V } is a symmetric cone [4]. Also, for any element u ∈ V , we write
u ≥ 0 if and only if u ∈ K. For any element u ∈ V , we write u = u+−u−, u+, u− ≥ 0
and u+ ◦ u− = 0.

Definition 2.3. An element d ∈ V is said to an idempotent if d2 = d. We say
that a nonzero element d ∈ V is a primitive idempotent if d cannot be represented
as the sum of two nonzero idempotents.

Remark 2.4. (i) A Jordan frame in V is a collection {e1, e2, . . . , es} of primi-
tive idempotents having the following properties

ek ◦ el = 0 for k 6= l, and
s∑

k=1

ek = e.

(ii) The Spectral Decomposition (refer to [4]): For any u ∈ V , we can find a real
numbers λ1, . . . , λs and {e1, e2, . . . , es} as a Jordan frame in V such that

u = λ1e1 + . . .+ λses.

In this case the representation λ1e1 + . . .+ λses is called the spectral decompo-
sition of u, where λi ∈ R is an eigenvalue of u. Throughout this paper, we fix a
Jordan frame {e1, e2, . . . , es} otherwise stated.

(iii) For any u ∈ V , we can define a linear map Lu : V −→ V as Lu(w) = u ◦ w.
If LuLv = LvLu, then we say u and v operator commute. It is understood
that u operator commute with v if and only if u and v have their spectral
decompositions with respect to a common Jordan frame ( [4], Lemma X.2.2).

Some standard examples are listed below.
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Example 2.5. Consider Rn with the Jordan product and usual inner product
respectively which are represented as follows:

u ◦ v = u ∗ v and 〈u, v〉 =
n∑

i=1

uivi,

where u ∗ v denotes the component wise product of u and v. Then Rn is a Euclidean
Jordan algebra with symmetric cone is Rn

+, the nonnegative orthant.

Example 2.6. Let Sn = {U ∈ Rn×n | U = UT}. Then, the Euclidean Jordan alge-
bra is the set Sn associated with the Jordan product and inner product respectively
given by

U ◦ V :=
1

2
(UV + V U) and 〈U, V 〉 := trace(UV ).

Moreover, the related symmetric cone is Sn
+, the set of all n×n positive semi-definite

matrices.

Now, we recall the proposition from [3] as follows:

Proposition 2.7. Consider for any u, v ∈ V . Then, the following conditions are
equivalent:

(i) u ≥ 0, v ≥ 0, and 〈u, v〉 = 0
(ii) u ≥ 0, v ≥ 0, and u ◦ v = 0.

In any case, u and v operator commute.

Throughout this article, we always take V to be a Euclidean Jordan algebra and
K to be the associated symmetric cone. Now, we recall some definitions as follows.

Definition 2.8. Let L : V → V be a linear transformation. We say that L is/has

(i) Strictly copositive on K if 〈u, L(u)〉 > 0 for all 0 6= u ∈ K.
(ii) Copositive on K if 〈u, L(u)〉 ≥ 0 for all u ∈ K.

(iii) Non-degenerate if u ∈ V

u operator commutes with L(u) and u ◦ L(u) = 0 =⇒ u = 0.

(iv) Cone non-degenerate if

u ∈ K, u operator commutes with L(u) and u ◦ L(u) = 0 =⇒ u = 0.

(v) The strictly semi-monotone(SSM) property if

u ∈ K, u operator commutes with L(u) and u ◦ L(u) ≤ 0 =⇒ u = 0.

(vi) The R0 property if

u ∈ K, L(u) ∈ K and u ◦ L(u) = 0 =⇒ u = 0.

(vii) The globally unique solvable(GUS) property on K if LCP(L, q) has only one
solution for all q ∈ K;

(viii) Lyapunov-like transformation if

u, v ∈ K, and 〈u, v〉 = 0 =⇒ 〈L(u), v〉 = 0.

(ix) Cone invariant if L(K) ⊆ K.
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3. Main Results

In this section, we study a non-degenerate transformations on Euclidean Jordan
Algebras. This section is divided into two parts. The first one deals with non-
degenerate transformations for cone invariant and copositive linear transformations,
and the other one deals with non-degenerate on Lyapunov-like transformation; both
are related to the Euclidean Jordan algebras.

3.1. Non-degenerate transformations for cone invariant and copositive lin-
ear transformations: In this subsection, we first characterize the cone non-degenerate
transformations for cone invariant transformations.

Theorem 3.1. Consider a linear transformation L : V → V which is cone invariant.
Then the following three statements are equivalent:

(i) L is cone non-degenerate.
(ii) L is strictly copositive on K.

(iii) L has the R0 property.

Proof. (i)⇒(ii): Suppose L is not strictly copositive on K, then we can find a
nonzero element u ∈ K such that 〈u, L(u)〉 ≤ 0. However, since u ≥ 0, L(u) ≥ 0, we
can rule out 〈u, L(u)〉 < 0. By proposition 1, u ◦ L(u) = 0 and u and L(u) operator
commute. By item (i) u = 0, which is not possible.

(ii)⇒(i): Let u ∈ K such that u operator commutes with L(u) and u ◦ L(u) = 0.
Then the Jordan frame will exist as {e1, e2, ....., es} such that

u =
s∑

i=1

uiei and L(u) =
s∑

i=1

viei.

From u ◦L(u) = 0, we have
s∑

i=1

uiviei = 0. This implies that uivi = 0 for all i. Now it

is enough to prove that u = 0. If u 6= 0, then 〈u, L(u)〉 > 0 as L is strictly copositive
on K. This indicates that

0 < 〈u, L(u)〉 =
s∑

i=1

uivi‖ei‖2 = 0

which is not possible. Therefore u = 0.

(ii)⇐⇒(iii): It follows from proposition 3.1, [9].

The following theorem provides that the SSM property is equivalent to the GUS on
K and cone non-degenerate for copositive transformation.

Theorem 3.2. Let L : V → V be a linear transformation that is copositive on K.
Then the following are equivalent:

(i) L is cone non-degenerate.
(ii) L has the SSM property.

(iii) L has the GUS property on K.
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Proof. (i)⇒(ii): Let us take an element u ≥ 0 such that u◦L(u) ≤ 0 and u operator
commutes with L(u). Since u and L(u) operator commute and u ≥ 0, L(u) ≥ 0, we
have u ◦ L(u) ≥ 0. Hence, u ◦ L(u) = 0. By item(i), u = 0.
(ii)⇒(i): It is obvious.
(i)⇒(iii): Assume that L is cone non-degenerate. Now we want to show that 0 is the
only solution to LCP(L, q) for any q ≥ 0. Suppose u ∈ K is a solution of LCP(L, q).
Then

u ≥ 0, L(u) + q ≥ 0 and 〈u, L(u) + q〉 = 0.

Therefore, by Proposition 1, u operator commutes with L(u)+q and u◦(L(u)+q) = 0.
〈u, L(u) + q〉 = 0 implies that 〈u, L(u)〉+ 〈u, q〉 = 0. From copositivity of L on K, we
have 〈u, q〉 = 0 and 〈u, L(u)〉 = 0. Then u operator commutes with q and u ◦ q = 0
by Proposition 1. This implies that u ◦L(u) = 0. Hence u = 0 as L is non-degenerate
on K. This arguments says that LCP(L, q) has the unique solution for all q ∈ K.
(iii)⇒(ii): It is follows from [6].

3.2. Non-degenerate on Lyapunov-like transformation. Matrix A ∈ Rn×n is
non-degenerate, then it is invertible. But, the invertible matrix need not be non-
degenerate. See the following example:

Example 3.3. Consider a matrix A =

1 1 1
0 1 2
1 2 1

. Det(A) = −2. It is invertible.

But the principle minors of A are A11 = −3, A22 = 0, A33 = 1. Hence A is not
non-degenerate matrix.

The following result tells us that for a Lyapunov-like transformation, the invertible
transformation is equivalent to the non-degenerate linear transformation.

Theorem 3.4. A Lyapunov-like transformations L : V → V is non-degenerate on
V if and only if L is invertible .

Proof. It is sufficient to show the reverse part. Suppose that L is invertible. Let us
consider an element u ∈ V such that u◦L(u) = 0 and u operator commutes with L(u).

Then we can find a Jordan frame {e1, e2, . . . , es} such that u =
s∑

i=1

uiei and L(u) =

s∑
i=1

viei. This implies that
s∑

i=1

uiL(ei) =
s∑

i=1

viei. Taking inner product with ej on

both sides, we get uj〈ej, L(ej)〉 = vj‖ej‖2. Since ujvj = 0, we have if uj 6= 0, then
vj = 0 and if uj = 0, then vj‖ej‖2 = 0 implying vj = 0 for all j. In any case,
L(u) = 0⇒ u = 0 as L is invertible.

The relationship between cone non-degenerate and the non-degenerate transforma-
tions for cone invariant transformation is shown by the results below.

Theorem 3.5. Let L : V → V be a Lyapunov-like transformation that is cone
invariant. Then the following two statement are equivalent.

(i) L is non-degenerate on K.
(ii) L is non-degenerate on V .
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Proof. (i) =⇒ (ii). Assume that L is non-degenerate on K. Let u ◦L(u) = 0 and u
operator commute with L(u). Then the Jordan frame {e1, e2, ....., es} will exist such
that

u =
s∑

i=1

uiei and L(u) =
s∑

i=1

viei.

Since u ◦ L(u) = 0, we have uivi = 0 for all i.
We have

〈u, L(u)〉 =
s∑

i=1

uivi‖ei‖2 = 0.

We know that

u = u+ − u− and L(u) = L(u+)− L(u−),

which implies that

〈u, L(u)〉 = 〈u+ − u−, L(u+)− L(u−)〉 = 0.

This gives that

〈u+, L(u+)〉+ 〈u−, L(u−)〉 − 〈u+, L(u−)〉 − 〈u−, L(u+)〉 = 0.

Since L is Lyapunov -like, we have 〈u−, L(u+)〉 = 0 and 〈u+, L(u−)〉 = 0 which
imply 〈u+, L(u+)〉 = 0 and 〈u−, L(u−)〉 = 0 as L is also cone invariant.

Therefore u+ ◦ L(u+) = 0 and u− ◦ L(u−) = 0. Since u+ ≥ 0, L(u+) ≥ 0 and
〈u+, L(u+)〉 = 0, u+ and L(u+) operator commute by Proposition 1. Similarly, u− ≥
0, L(u−) ≥ 0 and 〈u−, L(u−)〉 = 0, u− and L(u−) operator commute. Hence u+ = 0
and u− = 0 by L is non-degenerate on K. This implies that u = 0.
(ii) =⇒ (i) is obvious.

4. The non-degenerate on some special transformations

In this segment, we prove some results related to the relaxation transformation and
automorphism invariance.

4.1. The relaxation transformation. In this subsection, we can define the relax-
ation transformation RD : V → V in a following way. Then for any u ∈ V , the
decomposition of Peirce with the Jordan frame {e1, e2, . . . , es} in V as,

u =
s∑

i=1

uiei +
∑
i<j

uij.

Then

RD(u) =
s∑

i=1

viei +
∑
i<j

uij,

where

[v1, v2, . . . , vs]
T = D[u1, u2, . . . , us]

T .

The generalized version of this transformation has been established by Gowda and
Tao [12]. Gowda and Tao [6, 12] have investigated several relationships between the
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characteristics of D and RD. We now characterize the non-degeneracy of RD in terms
of the matrix D.

Theorem 4.1. If RD is non-degenerate on V , then D is non-degenerate matrix.

Proof. Let u ∗Du = 0, where uT = [u1, u2, . . . , us]. Let v = Du = [v1, v2, . . . , vs]
T .

We claim that u = 0. We define w =
s∑

i=1

uiei. Then

RD(w) =
s∑

i=1

viei and w ◦RD(w) =
s∑

i=1

uiviei = 0.

Note that w and RD(w) operator commute. Since RD(w) is non-degenerate, this
implies that w = 0 and hence u = 0. Therefore, D is a non-degenerate matrix.

By using the following example, the converse of the above theorem need not be true.

Example 4.2. Let V = S2 be the set of all 2×2 real symmetric matrics. Consider

elements E1 =

[
1 0
0 0

]
, E2 =

[
0 0
0 1

]
and D =

[
−1 0
0 −1

]
It is easy to show that D is non-degenerate.
Now we define RD with respect to the Jordan frame {E1, E2} as

RD(U) = −aE1 + (−c)E2 +

[
0 b
b 0

]
=

[
−a b
b −c

]
Where

U =

[
a b
b c

]
= aE1 + cE2 +

[
0 b
b 0

]
.

And

U ◦RD(U) =
1

2
[URD(U) +RD(U)U ].

For W =

[
1 1
1 1

]
> 0, W ◦ RD(W ) = 0 and W operator commutes with RD(W )

Hence RD(W ) is not non-degenerate.

4.2. Automorphism Invariance.

Definition 4.3. Let Λ : V → V be an invertible linear transformation. Λ is
referred to as an algebra automorphism if Λ(u◦v) = Λ(u)◦Λ(v) for all u, v ∈ V . Here
Aut(V )-set of all automorphisms of V .

We define transformations L̃ by L̃ := ΛTLΛ. We say that a property P is invariant
under the automorphisms of the algebra if L̃ has property P whenever L has property
P .

The non-degenerate in Euclidean Jordan algebras is shown in this subsection to be
invariant under algebra automorphism. We recall the following result from Proposition
4.2 in [5], which will be used in sequel.

Lemma 4.4. Let {e1, e2, . . . , es} be a Jordan frame in V and Λ ∈ Aut(V ). Then
{Λ(e1),Λ(e2), . . . ,Λ(es)} is a Jordan frame in V and there exist positive numbers θ1,
θ2,. . . ,θs such that (ΛT )−1(ei) = θiΛ(ei) for all i.
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Theorem 4.5. Non-degenerate linear transformations are invariant under algebra
automorphism of V .

Proof. Let Λ ∈ Aut(V ). Suppose L is non-degenerate on V . It is enough to
show that ΛTLΛ is non-degenerate. Let u operator commute with ΛTLΛ(u) and
u ◦ ΛTLΛ(u) = 0. Then there exist a Jordan frame {e1, e2, . . . , es} such that

u =
s∑

i=1

uiei and ΛTLΛ =
s∑

i=1

viei.

Since u◦ΛTLΛ(u) = 0, we have uivi = 0. Then we can find positive number θi and
a Jordan frame {Λ(e1),Λ(e2), . . . ,Λ(es)} in V , such that (ΛT )−1(ei) = θiΛ(ei) for all

i by the above lemma. Thus we have Λ(u) =
s∑

i=1

uiΛ(ei) and L(Λ(u)) =
s∑

i=1

viθiΛ(ei).

This means that Λ(u) and L(Λ(u)) operator commute. Since uivi = 0 for all i, then

Λ(u) ◦ L(Λ(u)) =
s∑

i=1

uiviθiΛ(ei) = 0. This implies Λ(u) = 0 as L is non-degenerate.

This implies u = 0 as Λ is invertible. Hence ΛTLΛ is non-degenerate on V .

4.3. The invariance of principal pivotal transformation. Let V1 and V2 are
two Euclidean Jordan algebras. Then their cartesian product V = V1 × V2 is also a
Euclidean Jordan algebras. Now let us think about a linear transformation L from V
to itself such that L to be expressed in a block form uniquely as

L =

[
P Q
R S

]
,

where each entry acts as a linear operator in the following order:

P : V1 → V1, Q : V2 → V1, R : V1 → V2, S : V2 → V2.

Assuming P is invertible, we can define the principal pivotal transformation [13] of L
as

L∗ =

[
P−1 −P−1Q
RP−1 L/P

]
.

where L/P = S −RP−1Q is the Schur complement of P in L.

Note that [
v1
v2

]
= L∗

[
u1
u2

]
⇐⇒

[
u1
v2

]
= L

[
v1
u2

]
.

Theorem 4.6. L∗ holds the non-degenerate whenever L possess the non-degenerate
on V .

Proof. Suppose [
u1
u2

]
and L∗

[
u1
u2

]
=

[
v1
v2

]
operator commute and [

u1
u2

]
◦ L∗

[
u1
u2

]
= 0.

Then ui operator commutes with vi for i = 1, 2. This implies that
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[
v1
u2

]
and

[
u1
v2

]
= L

[
v1
u2

]
operator commute and [

v1
u2

]
◦ L
[
v1
u2

]
= 0.

Since L is non-degenerate, therefore

[
v1
u2

]
=

[
0
0

]
.

From v1 = 0, u2 = 0, we get

[
u1
v2

]
= L

[
v1
u2

]
= L

[
0
0

]
.

This indicates that

[
u1
v2

]
=

[
0
0

]
. Therefore L∗ is non-degenerate.

5. Conclusion

In this paper, we first characterized the cone non-degenerate of co-positive and cone
invariant transformations. We proved that non-degenerate transformations of a cone
invariant Lyapunav-like transformation coincides with the cone non-degenerate. In
addition, we showed that non-degenerate under relaxation transformation. Finally we
proved that the non-degenerate is invariant under principal pivotal transformation.
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