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ON POSITIVE SEMIDEFINITE PRESERVING STEIN

TRANSFORMATION

YOON J. SONG

Abstract. In the setting of semidefinite linear complementarity problems
on Sn, we focus on the Stein Transformation SA(X) := X − AXAT for

A ∈ Rn×n that is positive semidefinite preserving (i.e., SA(Sn
+) ⊆ Sn

+)
and show that such transformation is strictly monotone if and only if it is
nondegenerate. We also show that a positive semidefinite preserving SA

has the Ultra-GUS property if and only if 1 ̸∈ σ(A)σ(A).
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1. Introduction

In this paper, we focus on the so-called semidefinite linear complementar-
ity problem (SDLCP) introduced by Gowda and Song [4]: Let Sn denote the
space of all real symmetric n × n matrices, and Sn

+ be the set of symmet-
ric positive semidefinite matrices in Sn. With the inner product defined by
⟨Z,W ⟩ := tr(ZW ), ∀Z,W ∈ Sn, the space Sn becomes a Hilbert space. Clearly,
Sn
+ is a closed convex cone in Sn. Given a linear transformation L : Sn → Sn

and a matrix Q ∈ Sn, the semidefinite linear complementarity problem, denoted
by SDLCP(L,Q), is the problem of finding a matrix X ∈ Sn such that

X ∈ Sn
+, Y := L(X) +Q ∈ Sn

+, and ⟨X,Y ⟩ = 0. (1)

Specializing L to the Stein transformation SA(X) := X−AXAT , various authors
tried to characterize GUS-property in terms of the matrix A ∈ Rn×n. The most
recent result is by Balaji [1] when A is a 2 × 2 matrix. When we translate the
statements of Theorem 6 of [1] to SA : S2 → S2, then SA is GUS if and only if
I ±A is positive semidefinite. However, Tao [14] showed that this is not true in
general (see Example 4.1 of [14]). The results of this paper states that when SA
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is positive semidefinite preserving, then SA is Ultra-GUS if and only if I ±A is
positive definite.

We list out needed definitions below.

(a) A matrix M ∈ Rn×n is called
– positive semidefinite if ⟨Mx, x⟩ ≥ 0 for all x ∈ Rn. If M is symmet-

ric positive semidefinite, we use the notation M ≽ 0. The notation
M ≼ 0 means −M ≽ 0. Note that a nonsymmetric matrix M is
positive semidefinite if and only if the symmetric matrix M +MT

is positive semidefinite.
– positive definite if ⟨Mx, x⟩ > 0 for all nonzero x ∈ Rn. If M is

symmetric positive definite, we use the notation M ≻ 0.

Definition of various properties below are from [4], [13], [14], [2], [8],
[7], [9], [6]. A linear transformation L : Sn → Sn has the

(b) P-property if [XL(X) = L(X)X ≼ 0] ⇒ X = 0
(c) Globally Uniquely Solvable (GUS)-property if for all Q ∈ Sn,

SDLCP(L,Q) in (1) has a unique solution.
(d) A linear transformation L : Sn → Sn is called monotone if ⟨L(X), X⟩ ≥

0 ∀X ∈ Sn; strictly monotone if ⟨L(X), X⟩ > 0 for all nonzeroX ∈ Sn.
(e) A linear transformation L : Sn → Sn is called copositve on Sn

+ if
⟨L(X), X⟩ ≥ 0 ∀X ≽ 0; strictly copositive on Sn

+ if ⟨L(X), X⟩ >
0 for all nonzero X ≽ 0.

(f) A linear transformation L : Sn → Sn is said to have the Cone-Gus-
property if for all Q ≽ 0, SDLCP(L,Q) has a unique solution.

(g) P′
2-property if [X ≽ 0, XL(X)X ≼ 0] ⇒ X = 0.

(h) P2-property if [X,Y ≽ 0, (X − Y )L(X − Y )(X + Y ) ≼ 0] ⇒ X = 0.
(i) nondegenrate if [XL(X) = L(X)X = 0] ⇒ X = 0.
(j) Z-property if [X,Y ≽ 0, ⟨X,Y ⟩ = 0] ⇒ ⟨X,L(X)⟩ ≤ 0.
(k) Lyapunov-like if both L and −L have the Z-property.
(l) positive semidefinite preserving if L(Sn

+) ⊆ Sn
+.

(m) Ultra-T-property if and only if L̂ and all its principal subtransformations
have the T properties where

L̂(X) := PTL(PXPT )P, P ∈ Rn×n invertible (X ∈ Sn).
(n) Corresponding to any α ⊆ {1, 2, · · · , n}, we define a linear transforma-

tion Lαα : S|α| → S|α| by

Lαα(Z) = [L(X)]αα (Z ∈ S|α|)

where, corresponding to Z ∈ S|α|, X ∈ Sn is the unique matrix such
that Xαα = Z and xij = 0 for all (i, j) /∈ α×α. We call Lαα the principal
subtransformation of L corresponding to α.

Next, we list out some well known matrix theoretic properties that are needed
in the paper [10].

(a) X ≽ 0 ⇒ UXUT ≽ 0 for any orthogonal matrix U .
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(b) X ≽ 0, Y ≽ 0 ⇒ ⟨X,Y ⟩ ≥ 0.
(c) X ≽ 0, Y ≽ 0, ⟨X,Y ⟩ = 0 ⇒ XY = Y X = 0.
(d) X ∈ Sn, ⟨X,Y ⟩ ≥ 0 ∀Y ≽ 0 ⇒ X ≽ 0. This says that the cone Sn

+ is
self-dual.

(e) Given X and Y in Sn with XY = Y X, there exist an orthogonal matrix
U , diagonal matrices D and E such that X = UDUT and Y = UEUT .

Finally, we state the known results (interpreting for the case of L = SA) that
are necessary for the paper. In the following and throughout the paper, σ(A)
denotes the spectrum of A, the set of all eigenvalues of an n× n matrix A; and
ρ(A) denotes the spectral radius of A, the maximum distance from the origin to
an eigenvalue of A in the complex plane.

(a) Example 3 of [8]: For A ∈ Rn×n, SA has the Z-property .
(b) Theorem 11 of [3]: ρ(A) < 1 ⇔ SA ∈ Q ⇔ SA ∈ P
(c) Theorem 28 of [11]: SA is nondegenerate if and only if 1 ̸∈ σ(A)σ(A).
(d) Theorem 5 of [6]:SA ∈ P2 if and only if SA is Ultra-GUS.
(e) Theorem 3.3 of [14]: SA ∈ P′

2 if and only if SA is Ultra Cone-Gus.
(f) Table on p56 of [11]: For SA,

strictly monotone ⇒ P2 ⇒ GUS ⇒ P ⇒ nondegenerate.
(g) Theorem 2.1 of [12]: SA is (strictly) monotone if and only if for all

orthogonal matrices U , νr(UAUT ◦ UAUT ) (<) ≤ 1 where νr(A) :=
max{|xTAx| : ∥x∥ = 1, x ∈ Rn} and ◦ denotes the Hadamard product.

2. Characterization of Ultra-GUS property of a positive semidefinite
preserving SA

We start with a Lemma.

Lemma 2.1. For A ∈ Rn×n, suppose SA is nondegenerate and copositive on
Sn
+. Then SA is Cone-Gus.

Proof. Let X be a solution to SDLCP(SA,−Q) where Q ≼ 0. It suffices to show
X = 0 to prove SA is Cone-Gus. Since
X(SA(X) − Q) = 0, we have XSA(X) = XQ, and SA(X)X = QX. Since SA

is copositive on Sn
+, ⟨X,SA(X)⟩ ≥ 0, but ⟨X,Q⟩ ≤ 0, and hence ⟨X,Q⟩ = 0 =

⟨X,−Q⟩. Since both X,−Q ≽ 0, XQ = 0 = QX. Then X = 0 follows from the
nondegeneracy of SA. �

Note that if SA is positive semidefinite preserving, then SA is Lyapunov-
like. (This is because SA ∈ Z and ⟨X,SA(X)⟩ ≥ 0 for all X ≽ 0.) Then by
Theorem 3.5 [13], SA is Cone-Gus if and only if SA is GUS. Since every positive
semidefinite preserving SA is copositive on Sn

+, we get the following

Theorem 2.2. If 1 ̸∈ σ(A)σ(A) and SA(S
n
+) ⊆ Sn

+, then SA is GUS.

We now show that if SA is nondegenerate and positive semidefinite preserving,
then SA is not only GUS, but also Ultra-GUS.
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Theorem 2.3. For A ∈ Rn×n, suppose SA is nondegenerate and positive semi-
definite preserving. Then SA is Ultra-GUS.

Proof. First we show that SA ∈ P′
2. Assume the contrary and let 0 ̸= X ≽ 0

be such that XSA(X)X ≼ 0. But SA is positive semidefinite preserving, so

tr(XSA(X)X) = 0. Let X = UDUT where D =

[
D+ 0
0 0

]
with D+ ≻ 0

diagonal and U orthogonal. Then

0 = tr(XSA(X)X) = tr(UTXSA(X)XU) = tr(DUTSA(X)UD).

Let UTSA(X)U =

[
M N
NT R

]
≽ 0. Note thatM ≽ 0. Then the matrix product

DUTSA(X)UD =

[
D+MD+ 0

0 0

]
. Thus,

0 = tr(XSA(X)X) = tr(D+MD+) = tr(M(D+)2)
with D+ nonsingular, so M = 0, which implies N = 0. Therefore,

UTSA(X)U =

[
0 0
0 R

]
. So D and UTSA(X)U commute with the product

0 where both are in Sn
+. Hence XSA(X) = 0 = SA(X)X. Then X = 0 by

nondegeneracy of SA.
As we noted earlier (right after Lemma 1), SA is Lyapunov-like. So by Theorem
6.1 [14], P′

2 = P2, that is, Ultra Cone-Gus = Ultra GUS. This completes the
proof. �

Now we characterize Ultra-GUS property of a positive semidefinite preserving
SA.

Theorem 2.4. For A ∈ Rn×n, let SA be positive semidefinite preserving. Then
the following are equivalent.

(a) 1 ̸∈ σ(A)σ(A).
(b) SA is Ultra-Gus.
(c) SA is strictly monotone.

Proof. The statement (a) ⇒ (b) is exactly Theorem 3.
Assume (b). Since P2 ⇒ nondegeneracy of SA, we get (a).
Finally, (b) and (c) are equivalent because SA is Lyapunov-like, and so by The-
orem 6.1 of [14], SA ∈ P2 if and only if SA is strictly monotone. This completes
the proof. �

Remark 2.1. In our previous paper [12], the strict monotonicity of SA was
characterized in terms of its real numerical radius (Theorem 2.1 of [12]). Hence
if SA is positive semidefinite preserving, then 1 ̸∈ σ(A)σ(A) if and only if
νr(UAUT ◦ UAUT ) < 1 for all U orthogonal. We now show that under the
assumption of positive semidefinite preservedness, both of these are equivalent
to the (easier-to-check) statement, I ±A positive definite.
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Theorem 2.5. If SA is positive semidefinite preserving, then the following are
all true or all false:

(a) I ±A is positive definite.
(b) ρ(A) < 1
(c) 1 ̸∈ σ(A)σ(A)
(d) νr(UAUT ◦ UAUT ) < 1 for all U orthogonal.

Proof. Assume (a). Note that I ±UTAU = UT (I ±A)U is also positive definite
for all orthogonal matrices U , and hence the (k, k)-entry of UTAU ([UTAU ]kk)
is less than 1 in absolute value. We will show first that SA is strictly copositive
on Sn

+. Suppose there exists 0 ̸= X ≽ 0 with ⟨X,SA(X)⟩ = 0. Let X = UDUT =

U(d1E11 + · · · + dnEnn)U
T , where di ≥ 0 for all i and dk > 0 for some k. The

matrix Eii is a diagonal matrix with all entries being 0 except the unit (i, i)-entry.
Then

0 = ⟨X,SA(X)⟩ = ⟨D,SUTAU (D)⟩ =
∑
i,j

didj⟨SUTAU (Eii), Ejj⟩.

Since SA is positive semidefinite preserving, so is SUTAU , then
didj⟨SUTAU (Eii), Ejj⟩ ≥ 0 for each i and j. In particular,∑

i,j didj⟨SUTAU (Eii), Ejj⟩ ≥ dk
2⟨SUTAU (Ekk), Ekk⟩, but the last term is posi-

tive because ⟨SUTAU (Ekk), Ekk⟩ = 1− ([UTAU ]kk)
2 > 0. Then ⟨X,SA(X)⟩ > 0

which is a contradiction. Hence SA is strictly copositive on Sn
+. Then by Theo-

rem 3.2 of [14], SA ∈ P′
2. Since P′

2 = P2 for this SA (see the proof of Theorem
3) and P2 ⇒ P, we get (b).
Since P ⇒ nondegenerate, we have (b) ⇒ (c).
The statement (c) ⇔ (d) is done in Theorem 4.
Finally, assume (d). Then ⟨X,SA(X)⟩ > 0 for all 0 ̸= X ∈ Sn. So, without
loss of generality, 0 < ⟨uuT , SA(uu

T )⟩ for all 0 ̸= u ∈ Rn with ∥u∥ = 1. Then,
⟨uuT , SA(uu

T )⟩ = 1− (⟨u,Au⟩)2 > 0. So, I±A is positive definite and the proof
is complete. �

Remark 2.2. Theorem 6 offers a way of checking when SA is not positive
semidefinite perserving. For example,

A =

[
0 0
2 0

]
,

satisfies (b), but not (a) of Theorem 6, so SA is not positive semidefinite pre-
serving.

3. Conclusion

In an attempt to find a characterization of GUS-property of the Stein trans-
formation, Balaji showed that for SA : S2 → S2, SA is GUS if and only if
I ± A is positive semidefinite (Theorem 6 [1]). Nevertheless, this does not gen-
eralize to Sn as Tao showed in his Example 4.1 [13]. In this paper, we showed
SA : Sn → Sn that is positive semidefinite preserving is Ultra-GUS if and only if
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I±A is positive definite. Still much to be done to characterize theGUS-property
of a general Stein transformation and that is the author’s future work.
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