References
- R. P. Agarwal, D. O. Regan, and D. R. Sahu, Fixed Point Theory for Lipschitzian Type Mappings with Applications, Topological Fixed Point Theory and Its Applications, 6, Springer, New York, 2009.
- F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-222. https://doi.org/10.1016/0022-247X(67)90085-6
- L. C. Ceng, S. M. Gu, and J. C. Yao, A general iterative method with strongly positive operators for general variational inequalities, Comput. Math. Appl. 59 (2010), no. 4, 14411452. https://doi.org/10.1016/j.camwa.2009.11.007
- J. Chen, L. Zhang, and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl. 334 (2007), no. 2, 1450-1461. https://doi.org/10.1016/j.jmaa.2006.12.088
- T. Jitpeera and P. Kumam, An extragradient type method for a system of equilibrium problems, variational inequality problems and fixed point of finitely many nonexpansive mappings, J. Nonlinear Anal. Optim. 1 (2010), no. 1, 71-91.
- T. Jitpeera and P. Kumam, A general iterative algorithm for generalized mixed equilibrium problems and variational inclusions approach to variational inequalities, Int. J. Math. Math. Sci. 2011 (2011), Article ID 619813, 25 pages.
- T. Jitpeera and P. Kumam, A composite iterative method for generalized mixed equilibrium problems and variational inequality problems, J. Comput. Anal. Appl. 13 (2011), no. 2, 345-361.
- J. S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005), no. 2, 509-520. https://doi.org/10.1016/j.jmaa.2004.08.022
- P. Katchang and P. Kumam, An iterative algorithm for finding a common solution of fixed points and a general system of variational inequalities for two inverse strongly accretive operators, Positivity 15 (2011), no. 2, 281-295. https://doi.org/10.1007/s11117-010-0074-8
- G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52. https://doi.org/10.1016/j.jmaa.2005.05.028
- M. O. Osilike and D. I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comput. Math. Appl. 40 (2000), no. 4-5, 559-567. https://doi.org/10.1016/S0898-1221(00)00179-6
- H. Piri, A general iterative method for finding common solutions of system of equilibrium problems, system of variational inequalities and fixed point problems, Math. Comput. Modell. 55 (2012), 1622-1638. https://doi.org/10.1016/j.mcm.2011.10.069
- H. Piri, Solutions of variational inequalities on fixed points of nonexpansive mappings, Bull. Iranian Math. Soc. 39 (2013), no. 4, 743-764.
- H. Piri, Hybrid pseudo-viscosity approximation schemes for systems of equilibrium problems and fixed point problems of infinite family and semigroup of non-expansive map- pings, Nonlinear Anal. 74 (2011), no. 17, 6788-6804. https://doi.org/10.1016/j.na.2011.06.056
- H. Piri, Strong convergence for a minimization problem on solutions of systems of equilibrium problems and common fixed points of an infinite family and semigroup of nonexpansive mappings, Comput. Math. Appl. 61 (2011), no. 9, 2562-2577. https://doi.org/10.1016/j.camwa.2011.02.049
- H. Piri and A. H. Badali, Strong convergence theorem for amenable semigroups of nonexpansive mappings and variational inequalities, Fixed Point Theory Appl. 2011 (2011), doi:10.1186/1687-1812-2011-55.
- S. Plubtieng and R. Wangkeeree, Strong convergence theorems for three-step iterations with errors for non-lipschitzian nonself-mappings in Banach spaces, Comput. Math. Appl. 51 (2006), no. 6-7, 1093-1102. https://doi.org/10.1016/j.camwa.2005.08.035
- R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88. https://doi.org/10.1090/S0002-9947-1970-0282272-5
- N. Xiu, Y. Wang, and X. Zhang, Modified fixed-point equations and related iterative methods for variational inequalities, Comput. Math. Appl. 47 (2004), no. 6-7, 913-920. https://doi.org/10.1016/S0898-1221(04)90075-2
- H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003), no. 3, 659-678. https://doi.org/10.1023/A:1023073621589
- Y. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007), no. 2, 1551-1558. https://doi.org/10.1016/j.amc.2006.08.062