• Title/Summary/Keyword: spectrum and point spectrum

Search Result 505, Processing Time 0.031 seconds

Assessment and Comparison of SUVs of Three Different PET/CT Scanners (장비에 따른 SUV의 차이와 이에 관한 고찰)

  • Kim, Tae-Yeob;Lim, Jung-Jin;Lee, Hong-Jae;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Purpose: The SUV is a widely used semi-quantitative index in PET for the estimation of radio-tracer accumulation in VOI. In this study, SUVs from three different PET/CT scanners were assessed, and differences between SUVs were evaluated. Materials and Methods: The PET/CT scanners which were assessed in this study were GEMINI, GEMINI TF 64 (Philips) and Biograph True Point True V 40 (Siemens). The NEMA PET phantom (Data Spectrum Corp., USA) was used to evaluate SUVs. The NEMA PET phantom has6.8 kg weight and three hot inserts. Two different activity distributions for the background and inserts were tested. The activity ratio were 3.7:3.7:7.4:11.1 MBq (1:1:2:3) and 1.85:7.4:9.25:11.1MBq (1:4:5:6) for each of background, insert 1, insert 2 and insert 3. Acquisition time was 2 minutes per bed position and NEMA PET phantom could be covered by two bed positions for all PET/CT scanners. The SUVs from each PET/CT scanner were compared with calculated true value. Results: For both activity ratios, all scanners showed similar results. The differences between each scanner were insignificant. Each scanner showed 91.2%, 85.9% and 87.2% of true SUV for GEMINI, GEMINI TF 64, Biograph True Point TrueV, respectively. Conclusion: For all scanners, SUVs were slightly lower than true value. However, the difference between scanners was insignificant. The SUVs from these scanners would be clinically meaningful if their consistent underestimation is kept in mind.

  • PDF

Absorption Spectroscopic Studies of Prodigiosin Extracted from Serratia Marcescens Strain (Serratia marcescens 균주로부터 추출한 Prodigiosin의 흡수분광학적 연구)

  • Park, Hee-Aurk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.355-361
    • /
    • 2019
  • The red pigment extracted from Serratia marcescens 2354 (ATCC 25419) was prodigiosin (PG), which was dissolved in methanol and measured for ultraviolet and visible light absorption spectra. It was the typical absorption spectrum of PG in an acid solution with ${\lambda}_{max}=537nm$. When the concentration of PG was increased from $1.0{\times}10-5M$ to $9.0{\times}10-5M$ in the methanol solution, the absorption intensity at 537 nm was increased, the absorption intensity at 467 nm was decreased, and the isosbestic point at 500 nm was observed. This phenomenon can be regarded as a result of reversible acid-base equilibrium reaction considering 537 nm and 467 nm of PG absorption band in acid and base solution respectively and isosbestic point of 500 nm. On the other hand, when the concentration of PG was reduced from $6.0{\times}10-4$ to $1.0{\times}10-4M$ in acetic acid buffer solution at pH 4.75, a new absorption band with ${\lambda}$ max at 500 nm appeared. This absorption band appears only in the aqueous solution of pH 4.75 and does not appear in the pure methanol solution of the same pH. This is due to the conversion of the PG molecule from the ${\alpha}$-isomer to the ${\beta}$-isomer by $H_2O$. In other words, it was confirmed that the color change of the PG can be caused by the concentration of the solution and the characteristics of the solvent.

Evaluation of SharpIR Reconstruction Method in PET/CT (PET/CT 검사에서 SharpIR 재구성 방법의 평가)

  • Kim, Jung-Yul;Kang, Chun-Koo;Park, Hoon-Hee;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Purpose : In conventional PET image reconstruction, iterative reconstruction methods such as OSEM (Ordered Subsets Expectation Maximization) have now generally replaced traditional analytic methods such as filtered back-projection. This includes improvements in components of the system model geometry, fully 3D scatter and low noise randoms estimates. SharpIR algorithm is to improve PET image contrast to noise by incorporating information about the PET detector response into the 3D iterative reconstruction algorithm. The aim of this study is evaluation of SharpIR reconstruction method in PET/CT. Materials and Methods: For the measurement of detector response for the spatial resolution, a capillary tube was filled with FDG and scanned at varying distances from the iso-center (5, 10, 15, 20 cm). To measure image quality for contrast recovery, the NEMA IEC body phantom (Data Spectrum Corporation, Hillsborough, NC) with diameters of 1, 13, 17 and 22 for simulating hot and 28 and 37 mm for simulating cold lesions. A solution of 5.4 kBq/mL of $^{18}F$-FDG in water was used as a radioactive background obtaining a lesion of background ratio of 4.0. Images were reconstructed with VUE point HD and VUE point HD using SharpIR reconstruction algorithm. For the clinical evaluation, a whole body FDG scan acquired and to demonstrate contrast recovery, ROIs were drawn on a metabolic hot spot and also on a uniform region of the liver. Images were reconstructed with function of varying iteration number (1~10). Results: The result of increases axial distance from iso-center, full width at half maximum (FWHM) is also increasing in VUE point HD reconstruction image. Even showed an increasing distances constant FWHM. VUE point HD with SharpIR than VUE point HD showed improves contrast recovery in phantom and clinical study. Conclusion: By incorporating more information about the detector system response, the SharpIR algorithm improves the accuracy of underlying model used in VUE point HD. SharpIR algorithm improve spatial resolution for a line source in air, and improves contrast recovery at equivalent noise levels in phantoms and clinical studies. Therefore, SharpIR algorithm can be applied as through a longitudinal study will be useful in clinical.

  • PDF

Spectral Efficiency Evaluation of Coordinated Multi-point Systems Based on System Level Simulations (멀티 포인트 시스템에서 시스템 레벨 시뮬레이션에 기반을 둔 스펙트럼 효율성 검증)

  • Jung, Bang-Chul;Shin, Won-Yong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2113-2120
    • /
    • 2011
  • In this paper, so as to improve spectral efficiency for cell-boundary users, we introduce a coordinated multi-point (CoMP) system, which is one of inter-cell cooperative transmission strategies studied in 3GPP long-term evolution-advanced (LTE-A) systems, and develop a system-level simulator to evaluate performance. To identify performance improvement of the system with inter-cell cooperative transmission, we select a 3GPP LTE system as a reference, which shows the highest performance among the existing mobile communication systems, and conduct a performance comparison. System-level simulation is performed based on widely-used OPNET tool. We implement modules including central unit (CU), CoMP eNodeB (CeNB), user equipment (UE), and multiple-input multiple-output (MIMO) channel model, while designing the inter-cell cooperative transmission system. Under WINNER wireless channel model and international telecommunication union (ITU) network model environments, we then evaluate the performance of edge users who belong to the lower 5% in terms of spectral efficiency. It is finally shown that throughput of the proposed CoMP system gets improved up to 2.5 times compared to that of the 3GPP LTE reference system.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.

Implementation of Self-Interference Cancellation Techniques for Full-Duplex Communication (전이중 통신을 위한 자기간섭 제거 기법 구현)

  • Kim, Young-Jun;Shin, Jinjae;Cho, Hyundeok;Yun, Ji-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.484-490
    • /
    • 2016
  • Full-duplex communication can enhance wireless capacity by enabling simultaneous transmission and reception of the signals on the same frequency spectrum. Such a benefit, however, is only achieved when strong self-interference is well canceled below a sufficient level. To achieve this goal, there have been several approaches for cancellation, each of which is combined with digital-domain cancellation for a higher gain. In this paper, we implement two self-interference cancellation techniques and integrate them with a software defined radio-based wireless communication testbed. Two cancellation techniques (antenna cancellation and noise subtraction) are implemented and the cancellation gain is measured via real experiments. The results show that the gain of the antenna placement technique highly depends on the placement of a receiving antenna and the highest gain is achieved at the expected point, and we show that combining the noise subtraction circuit with the antenna placement further improves the cancellation gain.

Reliability and Validity of the Korean Translation of Quantitative Checklist for Autism in Toddlers: A Preliminary Study

  • Park, Subin;Won, Eun-Kyung;Lee, Ji Hyun;Yoon, Soyoung;Park, Eun Jin;Kim, Yeni
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.29 no.2
    • /
    • pp.80-85
    • /
    • 2018
  • Objectives: We aimed to assess the test-retest reliability, internal consistency, and validity of the Korean version of the Quantitative Checklist for Autism in Toddlers (Q-CHAT). Methods: The Korean version of the Q-CHAT and the Korean version of the Child Behavior Checklist (CBCL) 1.5-5 were completed by parents of 24 toddlers and preschoolers with autism spectrum disorder (ASD) and 80 unselected toddlers and preschoolers. Parents of the ASD group also completed the Social Communication Questionnaire (SCQ), and Childhood Autism Rating Scale (CARS) scores were obtained from medical records. Results: The ASD group scored higher on the Q-CHAT than the unselected group. The Cronbach's alpha coefficient of the Q-CHAT was 0.658, and test-retest reliability was calculated to be 0.836. The estimated area under the curve was 0.793. The total scores of the Q-CHAT in the ASD group demonstrated significant positive correlations with findings regarding pervasive development problems in the CBCL, SCQ, and CARS. A total score of 33.5 may be a useful cutoff point to use when identifying toddlers at risk of ASD. Conclusion: The Korean version of the Q-CHAT has good reliability and validity and can be used as a screening tool in order to identify toddlers and preschool children at risk of ASD.

Device-to-Device assisted user clustering for Multiple Access in MIMO WLAN

  • Hongyi, Zhao;Weimin, Wu;li, Lu;Yingzhuang, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2972-2991
    • /
    • 2016
  • WLAN is the best choice in the place where complex network is hard to set up. Intelligent terminals are more and more assembled in some areas now. However, according to IEEE 802.11n/802.11ac, the access-point (AP) can only serve one user at a single frequency channel. The spectrum efficiency urgently needs to be improved. In theory, AP with multi-antenna can serve multiple users if these users do not interfere with each other. In this paper, we propose a user clustering scheme that could achieve multi-user selection through the mutual cooperation among users. We focus on two points, one is to achieve multi-user communication with multiple antennas technique at a single frequency channel, and the other one is to use a way of distributed users' collaboration to determine the multi-user selection for user clustering. Firstly, we use the CSMA/CA protocol to select the first user, and then we set this user as a source node using users' cooperation to search other proper users. With the help of the users' broadcast cooperation, we can search and select other appropriate user (while the number of access users is limited by the number of antennas in AP) to access AP with the first user simultaneously. In the network node searching, we propose a maximum degree energy routing searching algorithm, which uses the shortest time and traverses as many users as possible. We carried out the necessary analysis and simulation to prove the feasibility of the scheme. We hope this work may provide a new idea for the solution of the multiple access problem.

Non-destructive Method for Selection of Soybean Lines Contained High Protein and Oil by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.401-406
    • /
    • 2001
  • The applicability of non-destructive near infrared reflectance spectroscopic (NIRS) method was tested to determine the protein and oil contents of intact soybean [Glycine max (L.) Merr.] seeds. A total of 198 soybean calibration samples and 101 validation samples were used for NIRS equation development and validation, respectively. In the developed non-destructive NIRS equation for analysis of protein and oil contents, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing, and 1 point second smoothing) and 2, 1, 20, 10 math treatment conditions with Standard Normal Variate and Detrend (SNVD) scatter correction method and entire spectrum (400-2500 nm) by using Modified Partial Least Squares (MPLS) regression, respectively. Validation of these non-destructive NIRS equations showed very low bias (protein: 0.060%, oil: -0.017%) and standard error of prediction (SEP, protein: 0.568 %, oil : 0.451 %) as well as high coefficient of determination ($R^2$, protein: 0.927, oil: 0.906). Therefore, these non-destructive NIRS equations can be applicable and reliable for determination of protein and oil content of intact soybean seeds, and non-destructive NIRS method could be used as a mass screening technique for selection of high protein and oil soybean in breeding programs.

  • PDF