• 제목/요약/키워드: specially orthotropic materials

검색결과 18건 처리시간 0.017초

특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(I) - 철근 콘크리트 슬래브교 - (Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (I) - Reinforced Concrete Slab Bridge)

  • 김덕현;원치문;이정호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.135-140
    • /
    • 2001
  • A post-tensioned reinforced concrete slab bridge is analyzed by specially orthotropic laminate theory. Symmetrically reinforced slab with tension and compression steel is considered for convenience of analysis. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of the rule of mixture. This bridge is under uniformly distributed vertical loads, and axial loads and end moments due to post-tensioning. In this paper, finite difference method is used for numerical analysis of this bridge. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used for design of new bridges, and maintenance and repair of old bridges.

  • PDF

특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(II) - 강 판형교 - (Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (II) - Steel Plate Girder Bridge)

  • 김덕현;원치문;이정호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.141-146
    • /
    • 2001
  • A post-tensioned steel plate girder bridge with cross-beams is analyzed by specially orthotropic laminate theory. The cross-sections of both girders and cross-beams are WF types. The result is compared with that of the beam theory. This bridge with simple support is under uniformly distributed vertical load, and axial loads and moment due to post-tension. In this paper, finite difference method for numerical analysis of simple supported bridge is developed. Relatively exact solution is obtained even with small number of meshes. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used in design of new bridges, and maintenance and repair of old bridges.

  • PDF

특별직교이방성 슬래브 교량의 파괴시 치수효과에 관한 연구 (A Study on Size/Scale Effects in the Failure of Specially Orthotropic Slab Bridges)

  • 한봉구;김덕현
    • Composites Research
    • /
    • 제23권1호
    • /
    • pp.23-30
    • /
    • 2010
  • 거더, 가로보와 콘크리트 상판 등을 포함한 대부분의 교량시스템은 특별직교이방성 판으로 거동한다. 일반적으로 이러한 경계조건을 갖는 단면 혹은 불규칙한 단면을 갖는 시스템은 해석적 해를 구하기가 복잡하다. 본 논문에서는 복합 재료로 만들어진 양변 단순지지된 슬래브교량의 설계적 방법을 제시하고자 한다. 복합재료로 이루어진 교량을 설계하기 위하여, 단면은 가장 경제적이면서 응력에 유리한 폼코어 형태를 채택하였고, 응력을 산출함에 있어서는 유한차분법 프로그램을 이용하였다. 본 논문에서는 치수가 증가됨에 따른 인장강도 감소율을 고려하였다. 파괴강도 해석은 본 논문에서 제시하고 있는 인장강도의 감소를 고려하여 제시하였다. 또한 이러한 경우에 대한 수치해석을 수행하였다.

치수효과를 고려한 특별직교이방성 샌드위치 슬래브교량의 파괴강도해석 (Size Effects in the Failure of Specially Orthotropic Sandwich Slab Bridges)

  • 한봉구;이용호
    • 한국강구조학회 논문집
    • /
    • 제16권3호통권70호
    • /
    • pp.333-344
    • /
    • 2004
  • 복합재료는 건설공학 분야의 해석, 설계, 제작, 건설, 품질 제어 등에서 경제적이고 효율적인 재료로 사용될 수 있다. 많은 교량 구조물중 거더, 가로보로 이루어진 콘크리트 상판은 특별직교이방성판으로 거동한다. 이러한 경계조건을 갖는 단면 혹은 불규칙한 단면을 갖는 시스템은 해석적인 해를 구하기가 매우 어렵다. 이러한 문제에 대한 해석을 위해서 유한차분법이 이용되었다. 본 논문에서는 인장강도 감소율을 적용하여 파괴강도 해석을 수행하였다. 또한 이러한 경우에 대한 수치해석을 수행하였다. 응력영역에 대한 Tasi-Wu의 파괴기준을 적용하였다.

포스트텐션된 철근콘크리트 슬래브의 보 이론에 의한 연구 (A Study on Post-Tensioned Reinforced Concrete Slab by the Beam Theory)

  • 한봉구;김덕현
    • Composites Research
    • /
    • 제22권5호
    • /
    • pp.24-29
    • /
    • 2009
  • 본 논문에서는 포스트텐션된 철근콘크리트 슬래브를 특별직교이방성 복합적층판 이론으로 해석하였다. 슬래브의 해석에 있어 단면의 기하학적, 물리적 특성이 중립면에서 휨-연계강성 $B_{ij}=0$ 이고, $D_{16}=D_{26}=0$ 임을 고려하였다. 철근콘크리트 슬래브는 특별직교이방성판으로 거동한다. 이러한 경계조건을 갖는 단면 혹은 불규칙한 단면을 갖는 시스템은 해석적 해를 구하기가 매우 어렵다. 이러한 문제에 대한 해석을 위해서 유한차분법이 이용되었다. 본 논문에서는 유한차분법과 보 이론을 해석을 위해 사용되었다. 그 결과 보 이론에 의한 해석 값이 판 이론의 값에 근접함을 알 수 있었다.

The Influence of the Aspect Ratio on the Composite Material Bridge Deck Structures

  • Han, Bong-Koo
    • Composites Research
    • /
    • 제27권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Theories for composite material structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the author. Most of the bridge deck structures on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms $M_x$ on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

An investigation into the mechanics of fiber reinforced composite disk springs

  • Yang, Peng;Van Dyke, Stacy;Elhajjar, Rani F.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.775-791
    • /
    • 2015
  • An analytical and experimental investigation is performed into the mechanical behavior of carbon-fiber/epoxy woven coned annular disk springs. An analytical approach is presented for predicting the deformation behavior of disk springs of specially orthotropic laminates with arbitrary geometric parameters. In addition, an analytical methodology is proposed for obtaining the deformation behavior of a stack of disk springs. The methodology is capable of accounting for parallel and series arrangements for uniform and irregular stacks. Element and assembly experimental results are used to validate the proposed method showing how to achieve flexible spring rates at various deflections ranges. This manuscript also provides guidelines for design and validation of disk spring assemblies.

도로구조물 경량화를 위한 복합재료 샌드위치 패널에 관한 연구 (The Advanced Composite Sandwich Panels for Light Weight of Road Structures)

  • 한봉구
    • 한국도로학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the road structures. For general construction material used, there is certain theoretical limit in sizes. For super road structure construction, the reduction in panel weight is the first step to take in order to break such size limits. METHODS : For a typical road structures panel, both concrete and advanced composite sandwich panels are considered. The concrete panel is treated as a special orthotropic plate. RESULTS : All types of advanced composite sandwich panels are considered as a self-weights less than one tenth of that of concrete panel. The concrete panel is treated as a special orthotropic plate to obtain more accurate result. CONCLUSIONS : Advanced composite sandwich panels are considered as a self-weights less than one tenth (10%) of that of concrete panel, with deflections less than that of the concrete panel. This conclusion gives good guide line for design of the light weight of road structures.

유한요소법을 이용한 코오드-고무 복합판의 동적특성에 관한 연구 (A study on the dynamic characteristics of the cord-rubber laminates rectangular plate by finite element method)

  • 김두만;김항욱
    • 오토저널
    • /
    • 제8권2호
    • /
    • pp.51-64
    • /
    • 1986
  • There has been considerable interest over the last twenty years in the subject of the elastic properties of the cord-rubber laminate. This has been due to the rather intensive study of the composites materials characteristics brought about by the increased use of rigid composites materials characteristics brought about by the increased use of rigid composites in many structural applications. The object of this study is to obtain the natural frequencies and modes of the simply supported cord-rubber laminate plates prior to the study on the analysis of the dynamic properties of the pneumatic tire. To obtain these natural frequencies and modes, the 12 degrees of freedom orthotropic rectangular plate finite elements are developed. By using classical lamination theory, the stress-strain relations are represented. The governing equation for the finite element is derived by energy method. To find the natural frequencies and modes, he eigenvalues and corresponding eigenvectors are computed by the well known Jacobi power method. In order to verify the capability of this present finite element, the results of the specially orthotropic plate and the angle-ply laminate plate are compared with the analytical solution. The analytical and numberical results are in good agreement. The following problems of the simply supported plate are analyzed by the present finite element. a) the natural frequencies and mode shapes of the cord-rubber laminate plate for various aspect ratio. b) The natural frequencies and mode shapes of the orthotropic plate with the rectangular hole in its center.

  • PDF

Structural Reliability of Thick FRP Plates subjected to Lateral Pressure Loads

  • Hankoo Jeong;R. Ajit Shenoi;Kim, Kisung
    • Journal of Ship and Ocean Technology
    • /
    • 제4권2호
    • /
    • pp.38-57
    • /
    • 2000
  • This paper deals with reliability analysis of specially orthotropic plates subjected to transverse lateral pressure loads by using Monte Carlo simulation method. The plates are simply supported around their all edges and have a low short span to plate depth ratio with rectangular plate shapes. Various levels of reliability analyses of the plates are performed within the context of First-Ply-Failure(FPF) analysis such as ply-/laminate-level reliability analyse, failure tree analysis and sensitivity analysis of basic design variables to estimated plate reliabilities. In performing all these levels of reliability analyses, the followings are considered within the Monte Carlo simulation method: (1) input parameters to the strengths of the plates such as applied transverse lateral pressure loads, elastic moduli, geometric including plate thickness and ultimate strength values of the plates are treated as basic design variables following a normal probability distribution; (2) the mechanical responses of the plates are calculated by using simplified higher-order shear deformation theory which can predict the mechanical responses of thick laminated plates accurately; and (3) the limit state equations are derived from polynomial failure criteria for composite materials such as maximum stress, maximum strain, Tsai-Hill, Tsai-Wu and Hoffman.

  • PDF