DOI QR코드

DOI QR Code

An investigation into the mechanics of fiber reinforced composite disk springs

  • Yang, Peng (Department of Civil Engineering and Mechanics, College of Engineering and Applied Science, University of Wisconsin-Milwaukee) ;
  • Van Dyke, Stacy (Department of Civil Engineering and Mechanics, College of Engineering and Applied Science, University of Wisconsin-Milwaukee) ;
  • Elhajjar, Rani F. (Department of Civil Engineering and Mechanics, College of Engineering and Applied Science, University of Wisconsin-Milwaukee)
  • Received : 2013.11.07
  • Accepted : 2014.09.26
  • Published : 2015.03.25

Abstract

An analytical and experimental investigation is performed into the mechanical behavior of carbon-fiber/epoxy woven coned annular disk springs. An analytical approach is presented for predicting the deformation behavior of disk springs of specially orthotropic laminates with arbitrary geometric parameters. In addition, an analytical methodology is proposed for obtaining the deformation behavior of a stack of disk springs. The methodology is capable of accounting for parallel and series arrangements for uniform and irregular stacks. Element and assembly experimental results are used to validate the proposed method showing how to achieve flexible spring rates at various deflections ranges. This manuscript also provides guidelines for design and validation of disk spring assemblies.

Keywords

Acknowledgement

Supported by : National Institute of Aerospace

References

  1. Almen, J. and Laszlo, A. (1936), "The uniform-section disk spring", Trans. ASME, 58, 305-314.
  2. ASTM (2007), D3039, Standard test method for tensile properties of polymer matrix composite materials, ASTM International, West Conshohocken, PA, USA..
  3. Calim, F.F. (2009), "Dynamic analysis of composite coil springs of arbitrary shape", Compos. Part B: Eng., 40(8), 741-757. https://doi.org/10.1016/j.compositesb.2009.04.017
  4. Chiu, C.-H., Tsai, K.-H., Lee, Y.-C. and Hwan, C.L. (2009), "The effects of hybrid laminate structures on the compression and fatigue properties of helical composite springs", J. Adv. Mater., 41(3), 57-69.
  5. Cho, J., Lee, J., Kim, K. and Lee, S.B. (2013), "Generalized evolutionary optimum design of fiber-reinforced tire belt structure", Steel Compos. Struct., Int. J., 15(4), 451-466. https://doi.org/10.12989/scs.2013.15.4.451
  6. Curti, G. and Montanini, R. (1999), "On the influence of friction in the calculation of conical disk springs", J. Mech. Des., 121(4), 622. https://doi.org/10.1115/1.2829508
  7. Curti, G. and Raffa, F. (1992), "Material nonlinearity effects in the stress analysis of conical disk springs", J. Mech. Des., 114(2), 238-244. https://doi.org/10.1115/1.2916937
  8. Dharan, C. and Bauman, J.A. (2007), "Composite disc springs", Compos. Part A: Appl. Sci. Manuf., 38(12), 2511-2516. https://doi.org/10.1016/j.compositesa.2007.08.008
  9. Hendry, J. and Probert, C. (1986), "Carbon fibre coil springs", Mater. Des., 7(6), 330-337. https://doi.org/10.1016/0261-3069(86)90104-4
  10. Huchette, P.V. and Hall, Jr. H.H. (1976), Composite material springs and manufacture; United States Patent.
  11. Hwan, C.-L., Chiu, C.-H., Lee, W.-L. and Lee, W.P. (2010), "The effects of rubber core diameter and the number of braided outer layers on the compression and fatigue properties of helical composite springs", J. Adv. Mater., 42(1), 65-77.
  12. Lee. M,, Kim, D., Chung, K., Youn, J.R. and Kang, T.J. (2004), "Combined isotropic-kinematic hardening laws with anisotropic back-stress evolution for orthotropic fiber-reinforced composites", Polym. Polym. Compos., 12(3), 225-233.
  13. Mahdi, E., Alkoles, O., Hamouda, A., Sahari, B.B., Yonus, R. and Goudah, G. (2006), "Light composite elliptic springs for vehicle suspension", Compos. Struct., 75(1-4), 24-28. https://doi.org/10.1016/j.compstruct.2006.04.082
  14. Mallick, P. (1985), "Design and development of composite elliptic springs for automotive suspensions", The Society of the Plastics Industry, Inc., 5.
  15. Naderi, A.-A., Rahimi, G.-H. and Arefi, M. (2014), "Influence of fiber paths on buckling load of tailored conical shells", Steel Compos. Struct., Int. J., 16(4), 375-387. https://doi.org/10.12989/scs.2014.16.4.375
  16. Saleeb, A., Wilt, T., Al-Zoubi, N. and Gendy, A.S. (2003), "An anisotropic viscoelastoplastic model for composites - sensitivity analysis and parameter estimation", Compos. Part B: Eng., 34(1), 21-39. https://doi.org/10.1016/S1359-8368(02)00078-1
  17. Schnorr (2003), Handbook for Disc Springs, Ann Arbor, MI, USA.
  18. Scowen, G. and Hughes, D. (1985), "The sulcated spring", (International Seminar) Proceedings of Autotech 85 Congress, The Institution of Mechanical Engineers; Automobile Division, IMechE publications.
  19. So, C., Tse, P., Lai, T. and Young, K.M. (1991), "Static mechanical behaviour of composite cylindrical springs", Compos. Sci. Technol., 40(3), 251-263. https://doi.org/10.1016/0266-3538(91)90084-3
  20. Subramanian, C. and Senthilvelan, S. (2011), "Short‐term flexural creep behavior and model analysis of a glass‐fiber‐reinforced thermoplastic composite leaf spring", J. Appl. Polym. Sci., 120(6), 3679-3686. https://doi.org/10.1002/app.33564
  21. Suprith, N., Annamalai, K., Naiju, C. and Mahadevan, A. (2013), "Design and analysis of automotive multi-leaf springs using composite materials", Appl. Mech. Mater., 372, 533-537. https://doi.org/10.4028/www.scientific.net/AMM.372.533
  22. Thompson, J., Marshall, I., Wood, J. and Hendry, J.C. (1992), "Computer aided design of FRP sulcated springs", Computer Aided Design in Composite Material Technology III, Springer, 445-462.
  23. Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells", Steel Compos. Struct., Int. J., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397
  24. Tse, P., Lai, T., So, C. and Cheng, C.M. (1994), "Large deflection of elastic composite circular springs under uniaxial compression", Int. J. Non-linear Mech., 29(5), 781-798. https://doi.org/10.1016/0020-7462(94)90071-X
  25. Wong, W.H., Tse, P.C., Lau, K.J. and Ng, N.F. (2004), "Spring constant of fibre-reinforced plastics circular springs embedded with nickel-titanium alloy wire", Compos. Struct., 65(3-4), 319-328. https://doi.org/10.1016/j.compstruct.2003.11.006
  26. Yu, A. and Hao, Y. (2013), "Effect of warping on natural frequencies of symmetrical cross-ply laminated composite non-cylindrical helical springs", Int. J. Mech. Sci., 74, 65-72. https://doi.org/10.1016/j.ijmecsci.2013.04.010

Cited by

  1. Brass fillers in friction composite materials: Tribological and brake squeal characterization for suitable effect evaluation vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.939
  2. Composite wave springs: Theory and design vol.95, 2016, https://doi.org/10.1016/j.matdes.2016.01.073
  3. Damage Initiation and Fatigue Behavior of Carbon-Fiber Composite Disk Springs vol.9, pp.1, 2015, https://doi.org/10.4271/2015-01-9084
  4. Multi-objective durability and layout design of fabric braided braking hose in cyclic motion vol.25, pp.4, 2015, https://doi.org/10.12989/scs.2017.25.4.403