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The Influence of the Aspect Ratio on the Composite Material 
Bridge Deck Structures

Bong-Koo Han†

ABSTRACT: Theories for composite material structures are too difficult for such design engineers for construction
and some simple but accurate enough methods are necessary. The author has reported that some laminate orientations
have decreasing values of D16, B16, D26 and B26 stiffnesses as the ply number increases. For such plates, the fiber
orientations given above behave as specially orthotropic plates and simple formulas developed by the author. Most of
the bridge deck structures on girders have large aspect ratios. For such cases further simplification is possible by
neglecting the effect of the longitudinal moment terms Mx on the relevant partial differential equations of equilibrium.
In this paper, the result of the study on the subject problem is presented.
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1. INTRODUCTION

The future of material industry will depend on if and when
the conventional construction materials are replaced by com-
posite materials. If composite materials are used for construc-
tion, the quantity is huge : in tons, not in kilos or pounds. A
composite materials can be used economically and efficiently
in broad civil engineering applications when standards and
processes for analysis, design, fabrication, construction and
quality control are established. The problem of deteriorating
infrastructures is very serious all over the world. The U.S. Civil
Engineering Research Foundation (CERF) report, “High-
Performance Construction Material and System : An Essential
Program for America and its Infrastructure”, published, in col-
laboration with several organizations, U.S. Department of
Transportation figures as follows: 

(1) The road bridge condition in U.S.A at the year 2009,
149,654 of the Americans 603,259 bridges are structur-
ally deficient or obsolete. (structurally deficient 71,177,
functionally obsolete 78,477) 

(2) 199,584 of these bridges are more than 50 years old and
unsuitable for current or projected traffic. 

(3) Traffic delays alone will cost Americans $115 billion per

year in lost work time and fuel by the year 2009. 
Steel girders become rusty. The reinforcing bars embedded

in concrete beams or slabs are subject to corrosion caused by
electro-chemical action. Underground fuel thanks are under
similar condition. In 1979, the U.S. Bureau of Standards
(NIST) study showed that yearly loss caused by corrosion
related damages mounted to 82 billion dollars, about 4.9% of
GNP. About 32 billion dollars could be saved if existing tech-
nologies were used to prevent such losses [1].

These figures are in the United States of America, where var-
ious federal, state, and other agencies are doing their best in
maintaining such structures in good condition. The issue of
deteriorating and damaged infrastructures and lifelines has
become a critically important subject in the United States as
well as Japan and Europe. The problem in developing nations,
where degree of construction quality control and maintenance
are in question, must be much more profound [1,2].

The composite materials can be effectively used for repair-
ing such structures. Because of the advantages of these mate-
rials, such repair job can fulfill two purposes:

(1) Repair of existing damage caused by corrosion, impact,
earthquake, and others.

(2) Reinforcing the structure against anticipated future sit-
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uation which will require increasing the load beyond the
design parameters used for this structure.

Before making any decision on repair work, reliable non
destructive evaluation is necessary. One of the dependable
methods is to evaluate the in-situ stiffness of the structure by
means of obtaining the natural frequency. By comparing the
in-situ stiffness with the one obtained at the design stage, the
degree of damage can be estimated rather accurately.

The reinforced concrete slab can be assumed as a [0, 90, 0]r
type specially orthotropic plate as a close approximation,
assuming that the influence of  stiffness
are negligible. Many of the bridge and building floor systems,
including the girders and cross beams, also behave as similar
specially orthotropic plates. Such plates are subject to the con-
centrated mass/masses in the form of traffic loads, or the test
equipments such as the accelerator in addition to their own
masses. Analysis of such problems is usually very difficult.

The most of the design engineers for construction has aca-
demic background of bachelors degree. Theories for compos-
ite structures are too difficult for such engineers and some
simple but accurate enough methods are necessary.

The author has reported that some laminate orientations
such as  and [α, β, β, γ, α, α,
β]r with , and  or 90o and with increasing r, have
decreasing values of B16, B26, D16, and D26 stiffness. Most of the
civil and architectural structures are large in sizes and the
numbers of laminae are large, even though the thickness to
length ratios are small enough to allow to neglect the trans-
verse shear deformation effects in stress analysis. For such
plates, the fiber orientations given above behave as specially
orthotropic plates and simple formulas developed by the ref-
erence [1,3] can be used. Most of the bridge and building slabs
on girders have large aspect ratios. For such cases further sim-
plification is possible by neglecting the effect of the longitu-
dinal moment terms (Mx) on the relevant partial differential
equations of equilibrium [3]. In this paper, the result of the
study on the subject problem is presented. Even with such
assumption, the specially orthotropic plate with boundary
conditions other than Navier or Levy solution types, or with
irregular cross section, or with nonuniform mass including
point masses, analytical solution is very difficult to obtain.
Numerical method for eigenvalue problems are also very
much involved in seeking such a solution [4-7].

The method of vibration analysis used is the one developed
by the author. He developed and reported, in 1974 [8], a sim-
ple but exact method of calculating the natural frequency of
beam and tower structures with irregular cross sections and
attached mass/masses. Since 1989, this method has been
extended to two dimensional problems with several types of
given conditions and has been reported at several international
conferences [7]. This method uses the deflection influence
surfaces. The finite difference method (F.D.M) is used for this
purpose, in this paper.

2. METHOD OF ANALYSIS 

The equilibrium equation for the specially orthotropic plate is:

(1)

where 
The assumptions needed for this equation are:
(1) The transverse shear deformation is neglected.
(2) Specially orthotropic layers are arranged so that no cou-

pling terms exist, i.e, 
(3) No temperature or hygrothermal terms exist.
The purpose of this paper is to demonstrate, to the prac-

ticing engineers, how to apply this equation to the slab systems
made of plate girders and cross beams.

In case of an orthotropic plate with boundary conditions
other than Navier or Levy solution type, or with irregular cross
section, or with nonuniform mass including point masses,
analytical solution is very difficult to obtain. Numerical meth-
ods for eigenvalue problems are also very much involved in
seeking such a solution [9-12]. Finite difference method is
used in this paper. The resulting linear algebraic equations can
be used for any cases with minor modifications at the bound-
aries, and so on.

The problem of deteriorating infrastructures is very serious
all over the world. Before making any decision on repair work,
reliable non destructive evaluation is necessary. One of the
dependable methods is to evaluate the in-situ stiffness of the
structure by means of obtaining the natural frequency. By
comparing the in-situ stiffness with the one obtained at the
design stage, the degree of damage can be estimated rather
accurately.

The basic concept of the Rayleigh method, the most popular
analytical method for vibration analysis of a single degree of
freedom system, is the principle of conservation of energy ; the
energy in a free vibrating system must remain constant if no
damping forces act to absorb it. In case of a beam, which has
an infinite number of degree of freedom, it is necessary to
assume a shape function in order to reduce the beam to a sin-
gle degree of freedom system. The frequency of vibration can
be found by equating the maximum strain energy developed
during the motion to the maximum kinetic energy. This
method, however, yields the solution either equal to or larger
than the real one. Recall that Rayleigh's quotient ≥1 [15,
pp 189-191]. For a complex beam, assuming a correct shape
function is not possible. In such cases, the solution obtained is
larger than the real one.

Design engineers need to calculate the natural frequencies of
such element but obtaining exact solution to such problems is
very much difficult. Pretlove reported a method of analysis of
beams with attached masses using the concept of effective
mass. This method, however, is useful only for certain simple
types of beams. Such problems can be easily solved by pre-
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sented method.
A simple but exact method of calculating the natural fre-

quency corresponding to the first mode of vibration of beam
and tower structures with irregular cross sections and attached
mass/masses was developed and reported by Kim in 1974 [8].
This method consists of determining the deflected mode
shape of the member due to the inertia force under resonance
condition. Beginning with initially “guessed” mode shape,
“exact” mode shape is obtained by the process similar to iter-
ation. Recently, this method was extended to two dimensional
problems including composite laminates, and has been applied
to composite plates with various boundary conditions with/
without shear deformation effects and reported at several
international conferences including the Eighth Structures
Congress (1990) and Fourth Materials Congress (1996) of
American Society of Civil Engineers.

This method is used for vibration analysis in this paper. A
natural frequency of a structure is the frequency under which
the deflected mode shape corresponding to this frequency
begins to diverge under the resonance condition. From the
deflection caused by the free vibration, the force required to
make this deflection can be found, and from this force, result-
ing deflection can be obtained. If the mode shape as deter-
mined by the series of this process is sufficiently accurate, then
the relative deflections (maximum) of both the converged and
the previous one should remain unchanged under the inertia
force related with this natural frequency. Vibration of a struc-
ture is a harmonic motion and the amplitude may contain a
part expressed by a trigonometric function.

2.1 Vibration analysis
In this paper, the method of analysis given in detail, in the

reference book is briefly repeated [2].
The magnitudes of the maximum deflection at a certain

number of points are arbitrarily given as

 (2)

where  denotes the point under consideration. This is
absolutely arbitrary but educated guessing is good for accel-
erating convergence. The dynamic force corresponding to this
(maximum) amplitude is

(3)

The “new” deflection caused by this force is a function F and
can be expressed as

        (4)

where  is the deflection influence surface. The relative

(maximum) deflections at each point under consideration of a
structural member under resonance condition,  and

, have to remain unchanged and the following con-
dition has to be held:

 (5)

From this equation,  at each point of  can be
obtained. But they are not equal in most cases. Since the nat-
ural frequency of a structural member has to be equal at all
points of the member, i.e.  should be equal for all ,
this step is repeated until sufficient equal magnitude of 
is obtained at all  points. 

However, in most cases, the difference between the maxi-
mum and the minimum values of  obtained by the first
cycle of calculation is sufficiently negligible for engineering
purposes. The accuracy can be improved by simply taking the
average of the maximum and the minimum, or by taking the
value of  where the deflection is the maximum. For the
second cycle,  is

 (6)

the absolute numerics of  can be used for convenience.

2.2 Finite difference method
The method used in this paper requires the deflection influ-

ence surfaces. F.D.M is applied to the governing equation of
the specially orthotropic plates,

(7)

where,  
The number of the pivotal points required in the case of the

order of error Δ2, where Δ is the mesh size, is five for the central
differences.

This makes the procedure at the boundaries complicated. In
order to solve such problem, the three simultaneous partial
differential equations of equilibrium with three dependent
variables, w, Mx and My, are used instead of Eq. (7) with

 [5,7].
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If F.D.M. is applied to these equations, the resulting matrix
equation is very large in sizes, but the tridiagonal matrix cal-
culation scheme used by Kim is very efficient to solve such
equations [3].

In order to confirm the accuracy of the F.D.M., [A/B/C]r
type laminate with aspect ratio of a/b = 1 (a = b = 1 m) is con-
sidered.

For simplicity, it is assumed that ,  and r = 1.
Since one of the few efficient analytical solutions of the spe-
cially orthotropic plate is Navier solution, and this is good for
the case of the four edges simple supported, F.D.M. is used to
solve this problem and the result is compared with the Navier
solution.

Calculation is carried out with different mesh sizes and the
maximum errors at the center of the plate are as follows.

mesh size 10 × 10 : error 0.140%
mesh size 20 × 20 : error 0.035%
mesh size 40 × 40 : error 0.009%

The error is less than 1%. This is smaller than the predicted
theoretical errors;

If F.D.M is applied to these equations, the resulting matrix
equation is very large in sizes, but the tridiagonal matrix cal-
culation scheme used by Kim & Han is very efficient to solve
such equations [4-7]. 

Since one of the few efficient analytical solutions of the spe-
cially orthotropic plate is Navier solution, and this is good for
the case of the four edges simple supported, F.D.M is used to
solve this problem. The result is satisfactory as expected.

By neglecting the Mx terms, the sizes of the matrices needed
to solve the resulting linear equations are reduced to two thirds
of the “non-modified” equations.

3. NUMERICAL EXAMINATION

3.1 Bridge deck structures
The bridge deck structure under consideration is as shown

in Fig. 1 and Fig. 2. 

Es = 200,000 MPa, ν = 0.3

   - Girder - - Cross beam -
HL = 500 mm HT = 300 mm
BL = 200 mm BT = 150 mm
T1L

= 15 mm T1T
= 10 mm

T2L
= 20 mm T2T

= 18.5 mm

The stiffnesses are given in Table 1. Type 1 is for the spe-
cially orthotropic plate and Type 2 is the case of a simple beam.
In oder to a study the effect of the cross beam sizes, variable
values of D22 are given, in Table 2.

Analysis is carried out and the result is given by Tables from
3 to 6. As Table 3 shows, the deflection of Type 2, based on
beam theory, is 2.43 times that of specially orthotropic theory.

A 0
o

= B 90
o

=

Fig. 1.  Bridge deck structure under consideration

Fig. 2.  Cross section of H beam 

Table 1.  Stiffnesses

Dij (N·m) Type 1 Type 2

D11
D22

101199927.65
21757837.94

101199927.65
0.00

Table 2. Stiffnesses with variable D22 

Dij (N·m) Case 1 Case 2 Case 3

D11
D22

101199927.60
21757837.94

101199927.60
41618360.36

101199927.60
61478882.78

 Table 3. Deflection at the center (m)
Loading : 100 kN at the center

Type 1 2  Type2/Type1

δ (m) 0.6765E-01 0.1646E+00 2.43

Table 4. Deflection at the center (m)
Loading : 100 kN at the center

Case 1 2 3 4 5

 δ (m) 0.6765
E-01

0.6262
E-01

0.6061
E-01

0.5951
E-01

0.5881
E-01

Case i/Case 1  1.0 1.0803 1.1162 1.1368 1.1503
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Increase of the cross beam sizes does not produce profound
change of deflection, Table 4. 

Similar conclusion can obtained from the frequency, Table 5
and 6. The specially orthotropic plate theory yields much
stiffer structure than by beam theory. 

3.2 Influence of the aspect ratio
The plate considered is as shown in Fig. 3. 
The material properties are:

E1 = 67.36 GPa, E2 = 8.12 GPa
G12 = 3.0217 GPa 
ν12 = 0.272, ν21 = 0.0328, r = 1
t1 = t2 = t3 = 0.005 m
Fiber orientation [0o/90o/0o] 

The stiffnesses are:

D11 = 2,927 N·m, D22 = 18,492 N·m, D12 = 627 N·m
a = nb, (n: an integer 1~5) 
and D66 = 849, b = 3 m
Transverse loading on the plate : q = 286.65 N/m2

In order to study the influence of Mx on the equilibrium
equations, three cases are considere:

Case A : w, Mx and My are considered.

Case B : w and My are considered, Mx is neglected.
Case C : Beam with unit width.

F.D.M. is used to obtain w, Mx and My, and obtain the nat-
ural frequency. The result is as shown in Fig. 4 and 5. Plates
with all edges simple supported (SS), the aspect ratio and the
natural frequencies at the center of the uniformly loaded plate
are as shown in Fig. 4.

Plates with one side simple and the other side free supported
(SF), the aspect ratio and the natural frequencies at the center
of the uniformly loaded plate are as shown in Fig. 5.

It is concluded that, for all boundary conditions, neglecting
Mx terms is acceptable if the aspect ratio (a/b) is equal to or
larger than 2. 

4. CONCLUSION

For practical design purposes, it is desirable to simplify the
vibration analysis procedure. One of the methods is to neglect
the influence of the longitudinal moment terms. This paper
aims to give some guideline and the way to apply the advanced

Table 5. Natural Frequency (rad/sec) 
Loading : 100 kN at the center

 Type  1  2 Type2/
Type1

w (rad/sec) 0.7313E+01 0.5133E+01 0.7019

Table 6. Natural Frequency (rad/sec)
Loading : 100 kN at the center

Case  1  2  3  4 5

w (rad/sec) 0.7313
E+01

0.7471
E+01

0.7539
E+01

0.7577
E+01

0.7603
E+01

Case i/Case 1 1.0 1.0216 1.0309 1.0361 1.0397

 Fig. 3. Configuration of [a/b/a]r Laminated Plate

Fig. 4. Natural Frequency of Case A, Case B, Case C (SS) 

Fig. 5. Natural Frequency of Case A, Case B, Case C (SF) 
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composite materials theory to the structures to the practicing
engineers. 

A natural frequency of a structure is the frequency under
which the deflected mode shape corresponding to this fre-
quency begins to diverge under the resonance condition. From
the deflection caused by the free vibration, the force required
to make this deflection can be found and from this force, the
resulting deflection can be obtained. 

Theories for composite material structures are too difficult
for such design engineers for construction and some simple
but accurate enough methods are necessary. The simply sup-
ported laminated plates are analyzed by the specially ortho-
tropic laminates theory. In this paper. the influence of the
aspect ratio on the specially orthotropic laminated plates is
studied and it is concluded that the method used is sufficiently
accurate for engineering purposes. 

Most of the bridge deck structures have plate aspect ratios
larger than 2. For such cases, design analysis becomes much
simpler if influence of the longitudinal moment terms on the
relevant differential equations of equilibrium can be neglected.
The result of the study on this subject is presented in this
paper.

It is concluded that, for all boundary conditions, neglecting
the longitudinal moment terms are acceptable if the aspect
ratio is equal to or larger than 2. The result of this paper can be
used for simply supported laminated plates analysis. 
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