• 제목/요약/키워드: special polynomials

검색결과 95건 처리시간 0.03초

Some Theorems Connecting the Unified Fractional Integral Operators and the Laplace Transform

  • Soni, R. C.;Singh, Deepika
    • Kyungpook Mathematical Journal
    • /
    • 제45권2호
    • /
    • pp.153-159
    • /
    • 2005
  • In the present paper, we obtain two Theorems connecting the unified fractional integral operators and the Laplace transform. Due to the presence of a general class of polynomials, the multivariable H-function and general functions ${\theta}$ and ${\phi}$ in the kernels of our operators, a large number of (new and known) interesting results involving simpler polynomials (which are special cases of a general class of polynomials) and special functions involving one or more variables (which are particular cases of the multivariable H-function) obtained by several authors and hitherto lying scattered in the literature follow as special cases of our findings. Thus the Theorems obtained by Srivastava et al. [9] follow as simple special cases of our findings.

  • PDF

The Inverse Laplace Transform of a Wide Class of Special Functions

  • Soni, Ramesh Chandra;Singh, Deepika
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.49-56
    • /
    • 2006
  • The aim of the present work is to obtain the inverse Laplace transform of the product of the factors of the type $s^{-\rho}\prod\limit_{i=1}^{\tau}(s^{li}+{\alpha}_i)^{-{\sigma}i}$, a general class of polynomials an the multivariable H-function. The polynomials and the functions involved in our main formula as well as their arguments are quite general in nature. On account of the general nature of our main findings, the inverse Laplace transform of the product of a large variety of polynomials and numerous simple special functions involving one or more variables can be obtained as simple special cases of our main result. We give here exact references to the results of seven research papers that follow as simple special cases of our main result.

  • PDF

A NEW FAMILY OF FUBINI TYPE NUMBERS AND POLYNOMIALS ASSOCIATED WITH APOSTOL-BERNOULLI NUMBERS AND POLYNOMIALS

  • Kilar, Neslihan;Simsek, Yilmaz
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1605-1621
    • /
    • 2017
  • The purpose of this paper is to construct a new family of the special numbers which are related to the Fubini type numbers and the other well-known special numbers such as the Apostol-Bernoulli numbers, the Frobenius-Euler numbers and the Stirling numbers. We investigate some fundamental properties of these numbers and polynomials. By using generating functions and their functional equations, we derive various formulas and relations related to these numbers and polynomials. In order to compute the values of these numbers and polynomials, we give their recurrence relations. We give combinatorial sums including the Fubini type numbers and the others. Moreover, we give remarks and observation on these numbers and polynomials.

SOME BILATERAL GENERATING FUNCTIONS INVOLVING THE CHAN-CHYAN-SRIVASTAVA POLYNOMIALS AND SOME GENERAL CLASSES OF MULTIVARIABLE POLYNOMIALS

  • Gaboury, Sebastien;Ozarslan, Mehmet Ali;Tremblay, Richard
    • 대한수학회논문집
    • /
    • 제28권4호
    • /
    • pp.783-797
    • /
    • 2013
  • Recently, Liu et al. [Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the generalized Lauricella function, Integral Transform Spec. Funct. 23 (2012), no. 7, 539-549] investigated, in several interesting papers, some various families of bilateral generating functions involving the Chan-Chyan-Srivastava polynomials. The aim of this present paper is to obtain some bilateral generating functions involving the Chan-Chyan-Sriavastava polynomials and three general classes of multivariable polynomials introduced earlier by Srivastava in [A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6], [A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191] and by Kaano$\breve{g}$lu and $\ddot{O}$zarslan in [Two-sided generating functions for certain class of r-variable polynomials, Mathematical and Computer Modelling 54 (2011), 625-631]. Special cases involving the (Srivastava-Daoust) generalized Lauricella functions are also given.

SOME RECURRENCE RELATIONS OF MULTIPLE ORTHOGONAL POLYNOMIALS

  • Lee, Dong-Won
    • 대한수학회지
    • /
    • 제42권4호
    • /
    • pp.673-693
    • /
    • 2005
  • In this paper, we first find a necessary and sufficient condition for the existence of multiple orthogonal polynomials by the moments of a pair of measures $(d{\mu},\;dv)$ and then give representations for multiple orthogonal polynomials. We also prove four term recurrence relations for multiple orthogonal polynomials of type II and several interesting relations for multiple orthogonal polynomials are given. A generalized recurrence relation for multiple orthogonal polynomials of type I is found and then four term recurrence relations are obtained as a special case.

SOME IDENTITIES INVOLVING THE GENERALIZED POLYNOMIALS OF DERANGEMENTS ARISING FROM DIFFERENTIAL EQUATION

  • RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제38권1_2호
    • /
    • pp.159-173
    • /
    • 2020
  • In this paper we define a new generalized polynomials of derangements. It also derives the differential equations that occur in the generating function of the generalized polynomials of derangements. We establish some new identities for the generalized polynomials of derangements. Finally, we perform a survey of the distribution of zeros of the generalized polynomials of derangements.

A New Class of Hermite-Konhauser Polynomials together with Differential Equations

  • Bin-Saad, Maged Gumaan
    • Kyungpook Mathematical Journal
    • /
    • 제50권2호
    • /
    • pp.237-253
    • /
    • 2010
  • It is shown that an appropriate combination of methods, relevant to operational calculus and to special functions, can be a very useful tool to establish and treat a new class of Hermite and Konhauser polynomials. We explore the formal properties of the operational identities to derive a number of properties of the new class of Hermite and Konhauser polynomials and discuss the links with various known polynomials.

SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제36권1_2호
    • /
    • pp.29-38
    • /
    • 2018
  • In this paper, we introduce a degenerate q-poly-Bernoulli numbers and polynomials include q-logarithm function. We derive some relations with this polynomials and the Stirling numbers of second kind and investigate some symmetric identities using special functions that are involving this polynomials.

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS

  • Ahn, Youngwoo;Kim, Kitae
    • Korean Journal of Mathematics
    • /
    • 제19권3호
    • /
    • pp.263-272
    • /
    • 2011
  • In the paper [1], an explicit correspondence between certain cubic irreducible polynomials over $\mathbb{F}_q$ and cubic irreducible polynomials of special type over $\mathbb{F}_{q^2}$ was established. In this paper, we show that we can mimic such a correspondence for quintic polynomials. Our transformations are rather constructive so that it can be used to generate irreducible polynomials in one of the finite fields, by using certain irreducible polynomials given in the other field.