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SOME IDENTITIES INVOLVING THE GENERALIZED

POLYNOMIALS OF DERANGEMENTS ARISING FROM

DIFFERENTIAL EQUATION†

CHEON SEOUNG RYOO

Abstract. In this paper we define a new generalized polynomials of de-

rangements. It also derives the differential equations that occur in the
generating function of the generalized polynomials of derangements. We

establish some new identities for the generalized polynomials of derange-

ments. Finally, we perform a survey of the distribution of zeros of the
generalized polynomials of derangements.
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1. Introduction

Many mathematicians have studied in the area of the special numbers and
polynomials. Many generalizations of these polynomials have been studied(see
[1, 2, 3, 4, 5, 6, 8, 9]). The numbers of derangements Dn are defined by the
generating function(see [1, 2]):

e−t

1− t
=

∞∑
n=0

Dn
tn

n!
.

Clark and Sved [1] obtained an interesting relationship between the number of
derangements Dn and the Bell numbers, as follows,

n∑
k=0

(
n

k

)
ksDk = n!

s∑
k=0

(
s

k

)
(−1)kns−kBk, 0 ≤ s ≤ n,
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where Bn is the familiar Bell numbers satisfying the generating function:

ee
t−1 =

∞∑
n=0

Bn
tn

n!
.

The following interesting properties of Dn can be obtained easily,

Dn

n!
= 1− 1

1!
+

1

2!
+ · · ·+ (−1)n

n!
,

lim
n→∞

D(n)

n!
=

1

e
,

n∑
k=0

(
n

k

)
Dk = n!,

Dn =
Γ(n+ 1,−1)

e
,

where Γ(z, a) is the incomplete gamma function(see [1, 2]). The polynomials of
derangements Dn(x) are defined by the generating function:(

e−t

1− t

)x
=

∞∑
n=0

Dn(x)
tn

n!
. (1.1)

Note that, by taking x = 1, (1.1) gives Dn(1) = Dn.

The generalized polynomials of derangements D
(α)
n (x) are defined by the gen-

erating function: (
e−t

1− t

)α
ext =

∞∑
n=0

D(α)
n (x)

tn

n!
. (1.2)

In the special case x = 0 and α = 1, we have D
(1)
n (0) = Dn. We recall that the

classical Stirling numbers of the first kind S1(n, k) and the second kind S2(n, k)
are defined by the relations(see [9])

(x)n =

n∑
k=0

S1(n, k)xk and xn =

n∑
k=0

S2(n, k)(x)k, (1.3)

respectively. Here (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial
polynomial of order n. If x is a variable, we use the following notation:

< x >k= x(x+ 1) · · · (x+ k − 1),

(
x

k

)
=

(x)k
k!

, (1 + t)x =

∞∑
k=0

(
x

k

)
tk.

(1.4)
Recently, in order to give explicit identities for special polynomials, differential
equations arising from the generating functions of special polynomials are stud-
ied by many authors(see [10, 11, 12, 13]). Inspired by their work, we construct
a differential equations by generating function of generalized polynomials of de-
rangements as follow. Let D denote differentiation with respect to t, D2 denote
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differentiation twice with respect to t, and so on; that is, for positive integer N ,

DNF =

(
∂

∂t

)N
F (t, x, α).

We derive a differential equations with coefficients ai(N, x, α), which is satisfied
by(
∂

∂t

)N
F (t, x, α)−a0(N, x, α)(1−t)−NF (t, x, α)−· · ·−aN (N, x, α)F (t, x, α) = 0.

For 0 ≤ i ≤ N , by using the coefficients ai(N, x, α) of this differential equation,
we have explicit identities for the generalized polynomials of derangements. This
paper is organized as follows. In Sect.2, we construct differential equations aris-
ing from the generating functions of generalized polynomials of derangements.
We establish some new identities for the generalized polynomials of derange-
ments. In Sect.3, using numerical methods, we investigate the structure of zeros
of the generalized polynomials of derangements.

2. Differential equations associated with the generalized
polynomials of derangements

In this section, we consider differential equations arising from the generating
functions of the generalized polynomials of derangements. Let

F = F (t, x, α) =

(
e−t

1− t

)α
ext. (2.1)

Then, by (2.1), we have

F (1) =
d

dt
F (t, x, α) =

d

dt

(
e−t

1− t

)α
ext

= α

(
e−t

1− t

)α−1{−e−t
1− t

+
−e−t

(1− t)2

}
ext + x

(
e−t

1− t

)α
ext

= (x− α)F (t, x, α) + α(1− t)−1F (t, x, α),

= ((x− α) + α(1− t)−1)F (t, x, α),

F (2) =
d

dt
F (1)

= α(1− t)−2F (t, x, α) + ((x− α) + α(1− t)−1)F (1)(t, x, α)

= α(1− t)−2F (t, x, α) + ((x− α) + α(1− t)−1)2F (t, x, α),

=
{

(x− α) + 2α(x− α)(1− t)−1 + (α2 + α)(1− t)−2
}
F (t, x, α),

(2.2)
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and

F (3) =
d

dt
F (2)

=
{

2α(x− α)(1− t)−2 + 2(α2 + α)(1− t)−3
}
F (t, x, α),

+
{

(x− α)2 + 2α(x− α)(1− t)−1 + (α2 + α)(1− t)−2
}
F (1)(t, x, α)

= (x+ α)3F (t, x, α)

+
{
α(x− α)2 + 2α(x− α)2

}
(1− t)−1F (t, x, α)

+
{

2α(x− α) + (α2 + α)(x− α) + 2α2(x− α)
}

(1− t)−2F (t, x, α)

+
{

2α3 + 2α2
}

(1− t)−3F (t, x, α).

(2.3)
Continuing this process, we can guess that

F (N) =

(
d

dt

)N
F (t, x, α)

=

N∑
i=0

ai(N, x, α)(1− t)−N+iF (t, x, α), (N = 1, 2, . . .).

(2.4)

Differentiating (2.4) with respect to t, we have

F (N+1) =
dF (N)

dt

=

N∑
i=0

ai(N, x, α)(N − i)(1− t)−N+i−1F (t, x, α)

+
N∑
i=0

ai(N, x, α)(1− t)−N+iF (1)(t, x, α)

=

N∑
i=0

ai(N, x, α)(α+N − i)(1− t)−N+i−1F (t, x, α)

+

N+1∑
i=1

(x− α)ai−1(N, x, α)(1− t)−N+i−1F (t, x, α).

(2.5)

On the other hand, by replacing N by N + 1 in (2.4), we get

F (N+1) =

N+1∑
i=0

ai(N + 1, x, α)(1− t)−N+i−1F (t, x, α). (2.6)
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By (2.5) and (2.6), we have

N∑
i=0

(−1)−iai(N, x, α)(α+N − i)(1− t)−N+i−1F (t, x, α)

+

N+1∑
i=1

(x− α)ai−1(N, x, α)(1− t)−N+i−1F (t, x, α)

=

N+1∑
i=0

ai(N + 1, x, α)(1− t)−N+i−1F (t, x, α).

(2.7)

Comparing the coefficients on both sides of (2.7), we obtain

a0(N + 1, x, α) = (α+N)a0(N, x, α),

aN+1(N + 1, x, α) = (x− α)aN (N, x, α),
(2.8)

and

ai(N+1, x, α) = (α+N−i)ai(N, x, α)+(x−α)ai−1(N, x, α), (1 ≤ i ≤ N). (2.9)

By (2.1) and (2.2), we have

a0(0, x, α) = 1.

In addition, by (2.2) and (2.4), we get

F (1) = a0(1, x, α)(1− t)−1F (t, x, α) + a1(1, x, α)F (t, x, α)

= α(1− t)−1F (t, x, α) + (x− α)F (t, x, α).
(2.10)

Thus, by (2.10), we obtain

a0(1, x, α) = α, a1(1, x, α) = x− α. (2.11)

It is not difficult to show that{
(x− α)2 + 2α(x− α)(1− t)−1 + (α2 + α)(1− t)−2

}
F (t, x, α)

=

2∑
i=0

ai(2, x, α)(1− t)−2+iF (t, x, α)

=
{
a0(2, x, α)(1− t)−2 + a1(2, x, α)(1− t)−1 + a2(2, x, α)

}
F (t, x, α).

(2.12)

Thus, by (2.12), we also get

a0(2, x, α) = α(α+1), a1(2, x, α) = 2α(x−α), a2(2, x, α) = (x−α)2. (2.13)

From (2.8), we note that

a0(N + 1, x, α) = (α+N)a0(N, x, α) = · · · =< α >N+1,

and

aN (N + 1, x, α) = αaN−1(N, x, α) = · · · = (x− α)N+1. (2.14)
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For i = 1, 2, 3 in (2.9), we get

a1(N + 1, x, α) = (x− α)

N∑
k=0

(α+N − 1)ka0(N − k, x, α),

a2(N + 1, x, α) = (x− α)

N−1∑
k=0

(α+N − 2)ka1(N − k, x, α),

and

a3(N + 1, x, α) = (x− α)
N−2∑
k=0

(α+N − 2)ka2(N − k, x, α).

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

ai(N + 1, x, α) = (x− α)

N+1−i∑
k=0

(α+N − i)kai−1(N − k, x, α). (2.15)

Note that, here the matrix ai(j, x, α)0≤i,j≤N is given by

1 < α >1 < α >2 < α >3 · · · < α >N
0 x− α · · · · · ·
0 0 (x− α)2 · · · · ·
0 0 0 (x− α)3 · · · ·
...

...
...

...
. . .

...
0 0 0 0 · · · (x− α)N


Now, we give explicit expressions for ai(N + 1, x, α). By (2.14) and (2.15), we
get

a1(N + 1, x, α) = (x− α)

N∑
k1=0

(α+N − 1)k1a0(N − k1, x, α)

= (x− α)

N∑
k1=0

(α+N − 1)k1 < α >N−k1

a2(N + 1, x, α) = (x− α)

N−1∑
k2=0

(α+N − 2)k2a1(N − k2, x, α)

= (x− α)2
N−1∑
k2=0

N−k1−1∑
k1=0

(α+N − 2)k2(α+N − k2 − 2)k1

× < α >N−k2−k1−1,
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and

a3(N + 1, x, α)

= x

N−2∑
k3=0

(α+N − 3)k3a2(N − k3, x, α)

= (x− α)3
N−2∑
k3=0

N−k3−2∑
k2=0

N−k3−k2−2∑
k1=0

(α+N − 3)k3

× (α+N − k3 − 3)k2(α+N − k3 − k2 − 3)k1 < α >N−k3−k2−k1−2 .

Continuing this process, we have

ai(N + 1, x, α) = (x− α)i
N−i+1∑
ki=0

N−ki−i+1∑
ki−1=0

· · ·
N−ki−···−k2−i+1∑

k1=0

× (α+N − i)ki(α+N − ki − i)ki−1 · · · (α+N − ki − · · · − k2 − i)k1
× < α >N−ki−···−k2−k1−i+1 .

(2.16)

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.1. For N = 0, 1, 2, . . . , the functional equation

F (N) =

N∑
i=0

ai(N, x, α)(1− t)−N+iF (t, x, α)

has a solution

F = F (t, x, α) =

(
e−t

1− t

)α
ext,

where

a0(N, x, α) =< α >N ,

aN (N, x, α) = (x− α)N ,

ai(N, x, α) = (x− α)i
N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

(α+N − i− 1)ki

× (α+N − ki − i− 1)ki−1 · · · (α+N − ki − · · · − k2 − i− 1)k1

× < α >N−ki−···−k2−k1−i, (1 ≤ i ≤ N − 1).

From (1.1), we note that

F (N) =

(
d

dt

)N
F (t, x, α) =

∞∑
k=0

D
(α)
k+N (x)

tk

k!
. (2.17)
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From Theorem 2.1 and (2.17), we can derive the following equation:

∞∑
k=0

D
(α)
k+N (x)

tk

k!
= F (N)

=

N∑
i=0

ai(N, x, α)(1− t)−N+iF (t, x, α)

=

∞∑
k=0

(
N∑
i=0

ai(N, x, α)D
(α+N−i)
k (x+N − i)

)
tk

k!
.

(2.18)

By comparing the coefficients on both sides of (2.18), we obtain the following
theorem.

Theorem 2.2. For k = 0, 1, . . . , and N = 0, 1, 2, . . . , we have

∞∑
k=0

D
(α)
k+N (x) =

N∑
i=0

ai(N, x, α)D
(α+N−i)
k (x+N − i), (2.19)

where

a0(N, x, α) =< α >N ,

aN (N, x, α) = (x− α)N ,

ai(N, x, α) = (x− α)i
N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

(α+N − i− 1)ki

× (α+N − ki − i− 1)ki−1
· · · (α+N − ki − · · · − k2 − i− 1)k1

× < α >N−ki−···−k2−k1−i, (1 ≤ i ≤ N − 1).

By (1.1) and (1.5), we have

F (N) =

∞∑
k=0

D
(α)
k+N (x)

tk

k!

=

N∑
i=0

ai(N, x, α)
1

(1− t)N−i
F (t, x, α)

=

N∑
i=0

ai(N, x, α)

( ∞∑
l=0

(N − i+ l − 1)l
tl

l!

)( ∞∑
k=0

D
(α)
k (x)

tk

k!

)

=

∞∑
k=0

(
N∑
i=0

k∑
l=0

(
k

l

)
ai(N, x, α)(N − i+ l − 1)lD

(α)
k−l(x)

)
tk

k!
.

(2.20)

By (2.18) and (2.20), we obtain the following theorem.
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Theorem 2.3. For k = 0, 1, . . . , and N = 0, 1, 2, . . . , we have

∞∑
k=0

D
(α)
k+N (x) =

N∑
i=0

k∑
l=0

(
k

l

)
ai(N, x, α)(N − i+ l − 1)lD

(α)
k−l(x).

If we take k = 0 in Theorem 2.3, then we have the following corollary.

Corollary 2.4. For N = 0, 1, 2, . . . , we have

D
(α)
N (x) =

N∑
i=0

ai(N, x, α).

By (2.17), we get

e−nt
(
d

dt

)N
F (t, x, α) =

( ∞∑
m=0

(−n)m
tm

m!

)( ∞∑
m=0

D
(α)
m+N (x)

tm

m!

)

=

∞∑
m=0

(
m∑
k=0

(
m

k

)
(−n)m−kD

(α)
N+k(x)

)
tm

m!
.

(2.21)

By the Leibniz rule and the inverse relation, we have

e−nt
(
d

dt

)N
F (t, x, α) =

N∑
k=0

(
N

k

)
nN−k

(
d

dt

)k
F (t, x− n, α)

=

∞∑
m=0

(
N∑
k=0

(
N

k

)
nN−kD

(α)
m+k(x− n)

)
tm

m!
.

(2.22)

Hence, by (2.21) and (2.22), and comparing the coefficients of
tm

m!
gives the

following theorem.

Theorem 2.5. Let m,n,N be nonnegative integers. Then

m∑
k=0

(
m

k

)
(−n)m−kD

(α)
N+k(x) =

N∑
k=0

(
N

k

)
nN−kD

(α)
m+k(x− n). (2.23)

Let us take m = 0 in (2.23). Then, we have the following corollary.

Corollary 2.6. For N = 0, 1, 2, . . . , we have

D
(α)
N (x) =

N∑
k=0

(
N

k

)
nN−kD

(α)
k (x− n).

For N = 0, 1, 2, . . . , the functional equation

F (N) =

N∑
i=0

ai(N, x, α)(1− t)−N+iF (t, x, α)
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has a solution

F = F (t, x, α) =

(
e−t

1− t

)α
ext.

Here is a plot of the surface for this solution. In Figure 1(left), we plot of the

-1

-0.5

0

0.5

1

t

-4

-2

0

2

4

x

0

5

10FHt,xL

-1

-0.5

0

0.5

1

t

-4 -2 0 2 4

x

-1

-0.5

0

0.5

1

t

DnHxL

Figure 1. The surface for the solution F (t, x, α)

surface for this solution. In Figure 1(right), we shows a higher-resolution density
plot of the solution. In Figure 1, we choose α = 2.

3. Distribution of the zeros of the generalized polynomials of
derangements

In this section, we investigate various properties of the generalized polynomi-

als of derangements D
(α)
n (x) = 0 such as the distribution of the roots and the

symmetry of the roots. The first few examples of generalized polynomials of

derangements D
(α)
n (x) are

D
(α)
0 (x) = 1,

D
(α)
1 (x) = x,

D
(α)
2 (x) = α+ x2,

D
(α)
3 (x) = 2α+ 3αx+ x3,

D
(α)
4 (x) = 6α+ 3α2 + 8αx+ 6αx2 + x4,

D
(α)
5 (x) = 24α+ 20α2 + 30αx+ 15α2x+ 20αx2 + 10αx3 + x5,

D
(α)
6 (x) = 120α+ 130α2 + 15α3 + 144αx+ 120α2x+ 90αx2 + 45α2x2 + 40αx3

+ 15αx4 + x6.
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We display the shapes of the generalized polynomials of derangements D
(α)
n (x)

and investigate its zeros. We plot the graph of the generalized polynomials

of derangements D
(α)
n (x) for n = 1, · · · , 10 combined together. The shape of

generalized polynomials of derangements D
(α)
n (x) for −20 ≤ x ≤ 20 are displayed

in Figure 2.

-20 -10 0 10 20

x

-2·10
8

-1·10
8

0

1·10
8

2·10
8

3·10
8

4·10
8

Dn
ΑHxL

Figure 2. Curve of the generalized polynomials of derangements D
(α)
n (x)

We investigate the zeros of the generalized polynomials of derangements

D
(α)
n (x) = 0 by using a computer. We plot the zeros of the D

(α)
n (x) = 0 for

n = 20, 40, α = −2, 2 and x ∈ C(Figure 3). In Figure 2(top-left), we choose
n = 20 and α = 2. In Figure 2(top-right), we choose n = 40 and α = 2. In Fig-
ure 2(bottom-left), we choose n = 20 and α = −2. In Figure 2(bottom-right),

we choose n = 40 and α = −2. Prove that D
(α)
n (x), x ∈ C, has Im(x) = 0

reflection symmetry analytic complex functions(see Figure 3).

Stacks of zeros of the generalized polynomials of derangements D
(α)
n (x) =

0 for 1 ≤ n ≤ 30 from a 3-D structure are presented(Figure 4). In Figure
4(left), we choose α = 2. In Figure 4(right), we choose α = −2. Our numerical
results for approximate solutions of real zeros of the generalized polynomials of

derangements D
(α)
n (x) = 0 are displayed(Tables 1, 2).
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-10

0
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20

30

Re(x)

Im(x)

Figure 3. Zeros of D
(α)
n (x)

Table 1. Numbers of real and complex zeros of D
(α)
n (x)

α = 2 α = −2
degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0
2 0 2 2 0
3 1 2 3 0
4 0 4 4 0
5 1 4 5 0
6 0 6 6 0
7 1 6 7 0
8 0 8 8 0
9 1 8 9 0
10 0 10 10 0
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Figure 4. Stacks of zeros of D
(α)
n (x), 1 ≤ n ≤ 30

Plot of real zeros of D
(α)
n (x) = 0 for 1 ≤ n ≤ 50 structure are presented(Figure

5). In Figure 5(left), we choose α = 2. In Figure 5(right), we choose α = −2.

Figure 5. Stacks of zeros of D
(α)
n (x), 1 ≤ n ≤ 50

We observed a remarkable regular structure of zeros of the generalized poly-

nomials of derangements D
(α)
n (x) = 0 and also to verify same kind of remarkable

regular structure of zeros of the of the generalized polynomials of derangements

D
(α)
n (x) = 0(Table 1). Next, an approximate solution satisfying D

(α)
n (x) = 0 for

x ∈ R are listed in Tables 2.
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Table 2. Approximate solutions of D
(α)
n (x) = 0, α = 2, x ∈ R

degree n x

1 0

2 −

3 −0.625816819

4 −

5 −1.237112761

6 −

7 −1.83920261

8 −

Table 3. Solutions of D
(α)
n (x) = 0, α = −2, x ∈ R

degree n x

1 0

2 −
√

2,
√

2

3 −2 1−
√

3, 1 +
√

3

4 −2, −2, 0, 4

5 −2, −2, −2, 3−
√

5, 3 +
√

5

6 −2, −2, −2, −2, 4−
√

6, 4 +
√

6

7 −2, −2, −2, −2, −2, 5−
√

7, 5 +
√

7

8 −2, −2, −2, −2, −2, −2, 2(3−
√

2), 2(3 +
√

2)

From all the numerical computations done in this research work, we give the

following problems: How many zeros do D
(α)
n (x) = 0 have? We are not able to

decide if D
(α)
n (x) = 0 has n distinct solutions(see Tables 1, 2, and 3). We like to

know the number of real zeros D
(α)
n (x) = 0. Finally, we prove that D

(α)
n (x) has

not refection symmetry for a ∈ R(see Figures 3, 4, and 5).
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