• Title/Summary/Keyword: spatial problem

Search Result 1,475, Processing Time 0.024 seconds

Accuracy Analysis of Cadastral Supplementary Control Points by Using Virtual Reference Station-Real Time Kinematic GPS Surveying - Focused on Geoje City - (VRS-RTK GPS측량을 이용한 지적도근점 정확도 분석 - 거제시 사례를 중심으로 -)

  • Choi, Woo-Seok;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • National Geographic Information Institute provides VRS service using permanent GPS networks. VRS-RTK(Virtual Reference System-Real Time Kinematic)GPS surveying which enable to accomplish the real time-based GPS surveying has been increasingly popular. However the positioning accuracy tends to deteriorate as the distance between the rover and base station increases in the VRS-RTK GPS surveying. To analysis this problem in this study, the accuracy of VRS-RTK data was analyzed with 2 different test sites of Geoje city, Gyeongnam province within and without the permanent GPS networks in order to accomplish the cadastral supplementary control surveying. As a result of surveying accuracy analysis at two test sites, positioning errors were ${\pm}0.03m$(RMSE) in both sites. The result was that within the tolerance specified in cadastral surveying law, and indicated the possibility of VRS-RTK GPS surveying in cadastral surveying.

Obstacle avoidance of Mobile Robot with Virtual Impedance (가상임피던스를 이용한 원격 이동로봇의 장애물회피)

  • Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, a virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

The Part and the Whole : The Ontological Assumptions of Modern Geographical Thought about the Regional Geography (부분과 전체 : 근대 지역지리 방법론의 고찰)

  • Kwon, Jung-Hwa
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.4
    • /
    • pp.81-92
    • /
    • 2001
  • Main debates in the modern geographical thoughts had been developed around the regional geography. Because regional geography had been regarded as a raison d'etre of geography, it remains solid status in geography curriculum. But unscientific nature of regional geography was the main problem of modern geography. Modern geography has developed the logical legitimation of regional geography, instead of research procedures. We examine the logic of modern geographical thoughts from 3 worldview. Here we represented the part - the whole relationship as the primary category, and classify these into three type according to the implicit proposition about the relationship. One is the organic view, which assume that the whole is greater than the sum of the parts. This view was the primary proposition held by the modem geographers. This view regarded the region as organic complex, and presume the unit region which is irreducible to the elements. The other is mechanic view, which presuppose that the whole is the sum of the parts. This view comprehend region by means of spatial order, in order to simplify the complex reality. Then we compare real condition with assumption. These two view held static assumption. Now, the third view regarded the part- the whole relationship as being dynamic. Most geographers held the organic view, although someone suggests the idea of harmony, the others suggests the idea of complex. But these view presumes the pre-industrial society in which the genre de vie was main principle of social order. Therefore It could not comprehend the regional concept in the context of the urbanization and industrialization.

  • PDF

A Geopolitical Approach of Transfrontier Peace Park in Southern Africa : Implication for the DMZ International Eco-Peace Park (남부아프리카 초 국경평화공원의 지정학적 접근: DMZ 세계생태평화공원 조성에 주는 시사점)

  • Moon, Nam Cheol
    • Journal of the Korean association of regional geographers
    • /
    • v.23 no.2
    • /
    • pp.311-324
    • /
    • 2017
  • This study has the purpose of geopolitical analysis on the role, function and problem of (trans) frontier park in Southern Africa. Frontier parks in Southern Africa had been used as a buffer zone between colonial empires and British colonial administration during the colonial period and as an interdiction zone of communism and black liberation movement during the apartheid regime, the cold war and the civil war. The ecological transfrontier peace parks in Southern Africa which is integrating the adjacent Frontier parks is utilized as a means of a conflict resolution and peace building after the end of cold war, civil war and apartheid regime, The ecological transfrontier peace parks in Southern Africa is very highly regarded as an effective means for a conflict resolution and peace building. But it is also being criticized for a reproduction of South Africa's politico-economic domination and of a socio-spatial division between racial groups.

  • PDF

Temporal Directmode for B Picture in H.264 / MPEG-4 AVC (H.264 / MPEG-4 AVC에서의 B 픽쳐를 위한 시간적 다이렉트 모드)

  • 전병문
    • Journal of Broadcast Engineering
    • /
    • v.7 no.4
    • /
    • pp.300-309
    • /
    • 2002
  • The object of this paper is to make temporal direct mode clear by providing a solution to the following problem : if the co-located block in the list 1 reference picture for direct mode has only the 1ist 1 motion vector or both the 1ist 0 and list 1 motion vectors, then which motion vector will be used for the direct mode motion vector calculation\ulcorner This paper also shows how to derive reference picture index and direct mode motion vector for each list in order to guarantee the high coding efficiency. when the co-located macroblock is in intra mode. Furthermore, the reasonable calculation methods for the direct mode motion vectors in the various cases are presented. Finally, experimental results show that the proposed temporal direct mode provides the comparable performance against the spatial direct mode. Therefore, the simulation proves that the proposed temporal direct mode is acceptable.

Hierarchical Motion Estimation Method for MASF (MASF 적용을 위한 계층적 움직임 추정 기법)

  • 김상연;김성대
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 1996
  • MASF is a kind of temporal filter proposed for noise reduction and temporal band limitation. MASF uses motion vectors to extract temporal information in spatial domain. Therefore, inaccurate motion information causes some distortions in MASF operation. Currently, bilinear interpolation after BMA(Block Matching Algorithm) is used for the motion estimation sheme of MASF. But, this method results in unreliable estimation when the object in image sequence has larger movement than the maximum displacement assumed in BMA or the input images are severely corrupted with noise. In order to i:;olve this problem, we analyse the effect of inaccurate motion on MASF and propose a hierarchical motion estimation algorithm based on the analysis results. Experimental results show that the proposed method produces reliable output under large motion and noisy situations.

  • PDF

Numerical Evaluation of Fundamental Finite Element Models in Bar and Beam Structures (Bar와 Beam 구조물의 기본적인 유한요소 모델의 수치해석)

  • Ryu, Yong-Hee;Ju, Bu-Seog;Jung, Woo-Young;Limkatanyu, Suchart
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The finite element analysis (FEA) is a numerical technique to find solutions of field problems. A field problem is approximated by differential equations or integral expressions. In a finite element, the field quantity is allowed to have a simple spatial variation in terms of linear or polynomial functions. This paper represents a review and an accuracy-study of the finite element method comparing the FEA results with the exact solution. The exact solutions were calculated by solid mechanics and FEA using matrix stiffness method. For this study, simple bar and cantilever models were considered to evaluate four types of basic elements - constant strain triangle (CST), linear strain triangle (LST), bi-linear-rectangle(Q4),and quadratic-rectangle(Q8). The bar model was subjected to uniaxial loading whereas in case of the cantilever model moment loading was used. In the uniaxial loading case, all basic element results of the displacement and stress in x-direction agreed well with the exact solutions. In the moment loading case, the displacement in y-direction using LST and Q8 elements were acceptable compared to the exact solution, but CST and Q4 elements had to be improved by the mesh refinement.

Optimization of Cooperative Sensing in Interference-Aware Cognitive Radio Networks over Imperfect Reporting Channel

  • Kan, Changju;Wu, Qihui;Song, Fei;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1208-1222
    • /
    • 2014
  • Due to the low utilization and scarcity of frequency spectrum in current spectrum allocation methodology, cognitive radio networks (CRNs) have been proposed as a promising method to solve the problem, of which spectrum sensing is an important technology to utilize the precious spectrum resources. In order to protect the primary user from being interfered, most of the related works focus only on the restriction of the missed detection probability, which may causes over-protection of the primary user. Thus the interference probability is defined and the interference-aware sensing model is introduced in this paper. The interference-aware sensing model takes the spatial conditions into consideration, and can further improve the network performance with good spectrum reuse opportunity. Meanwhile, as so many fading factors affect the spectrum channel, errors are inevitably exist in the reporting channel in cooperative sensing, which is improper to be ignored. Motivated by the above, in this paper, we study the throughput tradeoff for interference-aware cognitive radio networks over imperfect reporting channel. For the cooperative spectrum sensing, the K-out-of-N fusion rule is used. By jointly optimizing the sensing time and the parameter K value, the maximum throughput can be achieved. Theoretical analysis is given to prove the feasibility of the optimization and computer simulations also shows that the maximum throughput can be achieved when the sensing time and the parameter of K value are both optimized.

The Extraction of Soil Erosion Model Factors Using GSIS Spatial Analysis (GSIS 공간분석을 활용한 토양침식모형의 입력인자 추출에 관한 연구)

  • 이환주;김환기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2001
  • Soil erosion by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. As the interest in environment is increasing lately, soil erosion is considered as a serious problem, whereas the systematic regulation and analysis for that have not established yet. This research shows the method of extracting factor entered model which expects soil erosion by GSIS. There are several erosion model such as ANSWER, WEPP, RUSLE. The research used RUSLE erosion model which could expect general soil erosion connected easily with GSIS data. RUSLE's input factors are composed of rainfall runoff factor(R). soil erodibility factor(K), slope length factor(L), slope steepness factor(S), cover management factor(C) and support practice factor(P). The general equation used to extract L, S factor on the RUSLE to be oriented for agricultural area has some limitation to apply whole watershed. So, on this study we used a revised empirical equation applicable to the watershed by grid on the GSIS. Also, we analyzed RUSLE factors by watershed being analyzed with watershed extraction algorithm. Then we could calculate the minimum, maximum. mean and standard deviation of RUSLE factors by watershed.

  • PDF

Geometric calibration of digital photogrammetric camera in Sejong Test-bed (세종 테스트베드에서 항측용 디지털카메라의 기하학적 검정)

  • Seo, Sang-Il;Won, Jae-Ho;Lee, Jae-One;Park, Byoung-Uk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The most recent, Digital photogrammetric camera, Airborne LiDAR and GPS/INS same sensors are used to acquire spatial information of various kinds in the field of aerial survey. In addition, Direct Georeferencing technology has been widely utilized with digital photogrammetric camera and GPS/INS. However, the sensor Calibration to be performed according to the combination of various sensors is followed by problems. Most of all, boresight calibration of integrated sensors is a critical element in the mapping process when using direct georeferencing or using the GPS/INS aerotriangulation. The establishment of a national test-bed in Sejong-si for aerial sensor calibration is absolutely necessary to solve this problem. And accurate calibration with used to integration of GPS/INS by aerotriangulation of aerial imagery was necessary for determination of system parameters, evaluation of systematic errors. Also, an investigation of efficient method for Direct georeferencing to determine the exterior orientation parameters and assessment of geometric accuracy of integrated sensors are performed.