• Title/Summary/Keyword: space-time block code (STBC)

Search Result 83, Processing Time 0.024 seconds

A Comparative Performance Analysis of STBC-OFDM Systems Under Frequency-Selective Rayleigh Fading Environments (주파수 선택성 레일라이 페이딩 환경에서 STBC-OFDM 시스템의 성능 비교, 분석)

  • Lee, Sang-Ho;Jung, Ho-Chul;Park, Hyung-Rae;Kim, Jong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.144-154
    • /
    • 2004
  • In this paper we apply the space-time block codes (STBCs), the key technologies for the 4th generation mobile communication systems, to the OFDM system and analyze their performances. First, we derive the signal models for representative STBC schemes and demodulation procedures for each scheme. We also select the parameters for OFDM system considering mobile cellular environments and assign adequate modulation schemes to STBC-OFDM schemes according to the transmission rate from 2bps/Hz to 4bps/Hz. We finally compare and analyze the performances of STBC-OFDM schemes for the selected transmission rates through computer simulations, together with performance comparison when the same modulation scheme being adopted.

  • PDF

Performance of Tactics Mobile Communication System Based on UWB with Double Binary Turbo Code in Multi-User Interference Environments (다중 사용자 간섭이 존재하는 환경에서 이중이진 터보부호를 이용한 UWB 기반의 전술이동통신시스템 성능)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of a tactics mobile communication system based on ultra wide band (UWB) in multi-user interference (MUI) environments. This system adopts a double binary turbo code for forward error correction (FEC). Wireless channel is modeled a modified Saleh and Valenzuela (SV) model. We employ a space time block coding (STBC) scheme for enhancing system performance. System performance is evaluated in terms of bit error probability. From the simulation results, it is confirmed that the tactics mobile communication system based on UWB, which is encoded with the double binary turbo code, can achieve a remarkable coding gain with reasonable encoding and decoding complexity in multi-user interference environments. It is also known that the bit error probability performance of the tactics mobile communication system based on UWB can be substantially improved by increasing the number of iterations in the decoding process for a fixed cod rate. Besides, we can demonstrate that the double binary turbo coding scheme is very effective for increasing the number of simultaneous users for a given bit error probability requirement.

Performance of analysis UWB system using MIMO-OFDM and frequency diversity (STBC-OFDM과 주파수 다이버시티를 적용한 UWB 시스템이 성능분석)

  • Choi, Jung-Hun;Han, Tae-Young;Kim, Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.423-428
    • /
    • 2004
  • In this paper, STBC (Space Time Block Code) is applied to the WB system and frequency repeated diversity is used to get the 4-th order space time diversity gain. The performance of が STDB-OFDM system is analyzed by computer simulation. As a result of simulation, proposed W system can reduce the complexity that is introduced by increasing number of transmit antenna and show the same performance of 4 antennas with only using 2. Proposed system shows the enhancement of 7.1 dB compared to the general UWB OFDM and 1.9 dB compared to UWB STBC-OFDM.

  • PDF

Performance Enhancement of OFDM Systems (Using Interference cancellation schemes of TD(Transmit Diversity)) (간섭제거 및 송신 다이버시티 기법을 적용한 OFDM 시스템에 대한 성능개선)

  • Kim, Jang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.77-86
    • /
    • 2012
  • Using OFDM(Orthogonal Frequency Division Multiplexing) provides the same diversity order as MRRC(Maximal Ratio Receiver Combining). It is assumed that fading channel is constant across two consecutive symbols. Unfortunately, when the channel condition is changed for the two consecutive symbols, the OFDM using STBC(Space Time Block Code) does not offer good performance due to the large doppler shift. In this paper, we have proposed a performance enhancement scheme for OFDM using STBC over time-selective fading channel. Simulation results for various doppler shift rates are presented to robust system performance of OFDM due to using our proposed scheme over time-selective fading channel.

A cooperative virtual MIMO system for moving networks (이동 네트워크를 위한 협력 가상 MIMO 시스템)

  • Kim, Jung-Hyun;Kim, Il-Hwan;You, Cheol-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, we propose a cooperative communication scheme for high transmission efficiency and coverage extension under multipath fading environment of moving networks. The proposed scheme uses a Space-Time Block Code (STBC) for improvement of receiving performance by using virtual Multiple-Input Multiple-Output(MIMO) transmit diversity. It can also achieve faster transmission time than a conventional scheme by using virtual MIMO configurations. Simulation results have shown that the proposed scheme provides SNR improvement and has faster transmission time compared to the conventional scheme, since it can utilize the good properties of spatial diversity and coding gain by using virtual MIMO configuration. In this paper, we propose simulations of UWB communication system to show validity by using the MATLAB.

Phase offset estimation scheme of using STBC with Turbo-code in Fading channel (페이딩 채널에서 STBC와 터보부호 기반의 위상오프셋 추정 기법)

  • Lee, Cheon-Ho;Ryu, Jung-Gon;Heo, Jun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1047-1048
    • /
    • 2006
  • In this paper, we present an iterative phase offset estimation algorithm based on a space-time block code and turbo coded system. External single phase estimator receives soft information from the turbo decoder and estimates phase offset with LMS algorithm. The estimated phase offset value is used for space-time decoder. Simulation results show the phase estimation gain in a flat fading channel.

  • PDF

STCDD Cooperative Transmission Scheme for Improvement of Reliability in OFDM Based UWB System (OFDM 기반 UWB 시스템의 신뢰도 향상을 위한 STCDD 협력 전송 기법)

  • Song, Hyoung-Kyu;Song, Jin-Hyuk;Yoon, Jae-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.547-554
    • /
    • 2010
  • Recently, the multi-band orthogonal frequency division multiplexing(MB-OFDM) system, one of UWB system, can satisfy the requirement and can be applied to various wireless communication services because ultra-wideband(UWB) is a wireless communication technique that supports high data rate with low power. In this paper, the method applying Alamouti's space time block code(STBC) and cyclic delay diversity(CDD) is proposed. The proposed method can be easily applied with arbitrary number of relays and only needs two time slots of quasi stationary assumption. And it is applied to the MB-OFDM system. Second, an optimal relaying scheme based on decode-and-forward(DF) method is proposed which is provides good error performance compared to conventional schemes.

Bandwidth-Efficient OFDM Transmission with Iterative Cyclic Prefix Reconstruction

  • Lim, Jong-Bu;Kim, Eung-Sun;Park, Cheol-Jin;Won, Hui-Chul;Kim, Ki-Ho;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.239-252
    • /
    • 2008
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response, resulting in a loss of bandwidth efficiency. In this paper, we describe a new technique to restore the cyclicity of the received signal when the CP is not sufficient for OFDM systems. The proposed technique efficiently restores the cyclicity of the current received symbol by adding the weighted next received symbol to the current received symbol. Iterative CP reconstruction (CPR) procedure, based on the residual intersymbol interference cancellation (RISIC) algorithm, is analyzed and compared to the RISIC. In addition, we apply the CPR method to Alamouti space-time block coded (STBC) OFDM system. It is shown that in the STBC OFDM, tail cancellation as well as cyclic reconstruction of the CPR procedure should be repeated. The computational complexities of the RISIC, the proposed CPR, the RISIC with STBC, and the proposed CPR with STBC are analyzed and their performances are evaluated in multipath fading environments. We also propose an iterative channel estimation (CE) method for OFDM with insufficient CP. Further, we discuss the CE method for the STBC OFDM system with the CPR. It is shown that the CPR technique with the proposed CE method minimizes the loss of bandwidth efficiency due to the use of CP, without sacrificing the diversity gain of the STBC OFDM system.

Performance Enhancement Technique using Iterative Decoding and Maximal Ratio Receive Combining Technique for Multiplexed STBC OFDM Systems (복호 및 최대수신결합을 반복적으로 이용한 Multiplexed STBC OFDM 성능향상 기법)

  • Jung Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.391-397
    • /
    • 2005
  • Since space time block code (STBC) technique of a transmission diversity technique was introduced, multiple input multiple output techniques using transmission diversity at the basestation for improving transmission data rate, have been studied extensively. Multiplexed STBC OFDM technique uses multiple groups of two transmit antennas and suppresses the interference signals of other STBC OFDM groups at the receivers. In this paper, I propose a new method of iterative decoding and maximal ratio receive combining technique for multiplexed STBC OFDM systems, and simulated and showed the results in comparison with the conventional methods.

Code Combining Cooperative Diversity in Long-haul Transmission of Cluster based Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1293-1310
    • /
    • 2011
  • A simple modification of well known Low Energy Adaptive Clustering Hierarchy (LEACH) protocol is proposed to exploit cooperative diversity. Instead of selecting a single cluster-head, we propose M cluster-heads in each cluster to obtain a diversity of order M. The cluster-heads gather data from all the sensor nodes within the cluster using same technique as LEACH. Cluster-heads transmit gathered data cooperatively towards the destination or higher order cluster-head. We propose a code combining based cooperative diversity protocol which is similar to coded cooperation that maximizes the performance of the proposed cooperative LEACH protocol. The implementation of the proposed cooperative strategy is analyzed. We develop the upper bounds on bit error rate (BER) and frame error rate (FER) for our proposal. Space time block codes (STBC) are also a suitable candidate for our proposal. In this paper, we argue that the STBC performs worse than the code combining cooperation.