• Title/Summary/Keyword: solar photovoltaic systems

Search Result 402, Processing Time 0.027 seconds

A Study on Fault Detection for Photovoltaic Power Modules using Statistical Comparison Scheme (통계학적 비교 기법을 이용한 태양광 모듈의 고장 유무 검출에 관한 연구)

  • Cho, Hyun Cheol;Jung, Young Jin;Lee, Gwan Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.89-93
    • /
    • 2013
  • In recent years, many investigations about photovoltaic power systems have been significantly carried out in the fields of renewable power energy. Such research area generally includes developments of highly efficient solar cells, advanced power conversion systems, and smart monitoring systems. A generic objective of fault detection and diagnosis techniques is to timely recognize unexpected faulty of dynamic systems so that economic demage occurred by such faulty is decreased by means of engineering techniques. This paper presents a novel fault detection approach for photovoltaic power arrays which are electrically connected in series and parallels. In the proposed fault detection scheme, we first measure all of photovoltaic modules located in each array by using electronic sense systems and then compare each measurement in turn to detect location of fault module through statistic computation algorithm. We accomplish real-time experiments to demonstrate our proposed fault detection methodology by using a test-bed system including two 20 watt photovoltaic modules.

A Study on the Application Strategies of Renewable Energy Systems Considering Layout and Block Plan in Apartment Building (공동주택의 배치 및 블록별 재생에너지 시스템의 적용성에 관한 연구)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.79-87
    • /
    • 2006
  • This study aims to presents the applicability of apartment building for renewable energy systems using method of uncomplicated calculation and computer simulation. According to the weather conditions (NASA Surface meteorology and Solar Energy) analysis, it has been found that photovoltaic and wind power system can be applied to apartment buildings application. In case study considering layout and block plan, adaptation of solar water heating, photovoltaic and wind energy system to apartment buildings was proved to produce a profit. And the application strategies of renewable energy systems can be used not only for the investment decisions for economic analysis but also for the comparative analysis of uncomplicated calculation and computer simulation.

An Analysis of Optimal Installation Condition and Maximum Power Generation of Photovoltaic Systems Applying Perez Model (Perez Model을 적용한 태양광 시스템 별 최적 설치 조건 및 최대 발전량 분석)

  • Lee, Jay-Dy;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • Photovoltaic(PV) system is one of power generation systems. Solar light in PV system is like the fuel of the car. The quantity of electricity generation, therefore, is fully dependent on the available quantity of solar light on the system of each site. If a utility can predict the solar power generation on a planned site, it may be possible to set up an appropriate PV system there. It may be also possible to objectively evaluate the performances of existing solar systems. Based on the theories of astronomy and meteorology, in this paper, Perez model is simulated to estimate the available quantity of solar lights on the prevailed photovoltaic systems. Consequently the conditions for optimal power generation of each PV system can be analyzed. And the maximum quantity of power generation of each system can be also estimated by applying assumed efficiency of PV system. Perez model is simulated in this paper, and the result is compared with the data of the same model of Meteonorm. Simulated site is Daejeon, Korea with typical meteorological year(TMY) data of 1991~2010.

A Study on the Analysis of Solar Radiation Components for the Installation of Concentrating Photovoltaic System (집광식 태양광발전시스템 설치를 위한 태양광자원 성분분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.53-59
    • /
    • 2007
  • Knowledge of the solar radiation components are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this component can be concentrated. The Korea Institute of Energy Research(KIER) has began collecting solar radiation component data since August, 1996. KIER's component data will be extensively used by concentrating PV system users or designers as well as by research institutes.

A Study of Korean Efficiency of PV PCS (태양광 인버터의 한국형 전력변환 효율에 관한 연구)

  • Kim, Jeong-Hwan;Yu, Byung-Gyu;So, Jung-Hun;Lee, Ki-OK;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.356-360
    • /
    • 2009
  • Recent global environmental pollution and contamination and depletion of limited fossil energy prices surge as an energy source to replace it depending on wind, fuel cells and solar power and other renewable and pollution free renewable energy is of interest in increase. The photovoltaic systems are pollution-free, unlimited energy source, and easy to install because it is rated as the most valuable renewable energy sector and the prevalence is spreading throughout the world. Photovoltaic systems at one end of the stable development of the role that solar power inverter applications can be the most important. No matter how much power the solar arrays, even if the inverter output in the normally if he's no use. These photovoltaic inverters to evaluate the performance of the inverter efficiency measures that can be called directly. This way of measuring the efficiency of solar inverters in Europe efficiency and CEC efficiency is currently being used. In this paper, until now about how to measure the efficiency of solar power inverter technology and the new Korean Meteorological Solar Insolation data analysis to derive weights based on this inverter efficiency for Korea is to offer.

  • PDF

A Review on Floating Photovoltaic Technology (FPVT)

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Zahid, Muhammad Aleem;Kim, Jaeun;Kim, Youngkuk;Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.67-78
    • /
    • 2020
  • A novel energy production system which has fascinated a wide consideration because of its several benefits that are called floating photovoltaic technology (FPVT). The FPVT system that helps to minimize the evaporation of water as well as an increase in energy production. For the research purposes, both electrical and mechanical structure requires studying of these systems for the development of FPVT power plants. From different points of views, numerous researches have been directed on FPVT systems that have evaluated these systems. The present research article give a logical investigation and up to date review that shows the different features and components of FPVT systems as an energy production system is offered. This articles reviewing the FPVT that gets the attention of the scientists who have the investigational stage and involuntary inspection of FPVT systems in addition to influence of implementing these systems on the water surface. Also, a comprehensive comparison has been constructed that shows the cons and pros of various types of solar systems that could be installed in various locations. In this review, it has been found that solar energy on the roof of a dwelling house generally has a power of 5 to 20 kW, while the inhabitants of commercial buildings generally have a power of 100 kW or more. The average power capacity of a floating solar panel is 11% more of the average capacity of a solar panel installed on the ground. Studies show that 40% of the water in open reservoirs is lost through evaporation. By covering only 30% of the water surface, evaporation can be reduced by 49%. The global solar panel market exceeds 100 GW and the capacity of 104 GW will bring the annual growth rate to 6%. In 2018, the world's total photovoltaic capacity reached 512 GW, an increase of 27% compared to the total capacity and about 55% of the renewable resources newly created that come from photovoltaic systems. It has been also predicted by this review that in 2025 the Solar technology including the FPVT system will increase by 7.38% that is 485.4 GW more of today installed power worldwide.

Forecasting the Grid Parity of Solar Photovoltaic Energy Using Two Factor Learning Curve Model (2요인 학습곡선 모형을 이용한 한국의 태양광 발전 그리드패리티 예측)

  • Park, Sung-Joon;Lee, Deok Joo;Kim, Kyung-Taek
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.441-449
    • /
    • 2012
  • Solar PV(photovoltaic) is paid great attention to as a possible renewable energy source to overcome recent global energy crisis. However to be a viable alternative energy source compared with fossil fuel, its market competitiveness should be attained. Grid parity is one of effective measure of market competitiveness of renewable energy. In this paper, we forecast the grid parity timing of solar PV energy in Korea using two factor learning curve model. Two factors considered in the present model are production capacity and technological improvement. As a result, it is forecasted that the grid parity will be achieved in 2019 in Korea.

A Study on the Photovoltaic Module Layout Considering the Azimuth and Inclination in Region (방위각 및 경사각을 고려한 지역별 태양광 모듈 배치안 검토)

  • Park, Sung-Hyun;Seo, Jang-Hoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.461-466
    • /
    • 2012
  • Recently, building energy systems with solar collector and solar module have increased to improve energy problem, a heat island, a global warming and carbon dioxide emissions. In this study, value of solar radiation in areas was analyzed using TRNSYS simulation, and the optimum tilt and orientation angle for installing a photovoltaic module was examined. Average values of the weather data in the past twenty years in areas were used as input data. The results show that the tilt angle of a photovoltaic module for gaining the annual maximum solar radiation varies in different localities, and values of the annual solar radiation gained by using the variable photovoltaic module increased by 2.5 percent as compared with that gained by using the fixed photovoltaic module. When fixed photovoltaic module is installed, it should be examined the tilt and orientation angle for installing a photovoltaic module was examined.

A Study on The development status and future of Photovoltaic Urban Project (태양광발전 도시 프로젝트의 개발현황과 발전방향 고찰)

  • Kim, Hyun-Il;Suh, Seung-Jik;Park, Kyung-Eun;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.87-92
    • /
    • 2008
  • Buildings are responsible for approximately 50% of current carbon dioxide emissions. Energy planning at a town and city scale needs a strategic approach, supported by strong planning policies. The purpose of this study was to investigate the urban scale grid-connected photovoltaic(PV) system for urban residential and commercial sector applications. The integration of PV technology into roof of houses is an approach that is being championed in Germany, Japan and United states etc. In the Korea, PV roofing systems already are given the large number of houses which are projected to be built by 2012. However unlike germany and Japan, urban scale grid-connected PV system is not yet installed. The solar city which is installed building-integrated photovoltaic system is available to use of renewable energy sources such as solar to meet demand, instead of fossil fuels, with the goal of realizing an ecologically oriented energy supply.

Performance Analysis of Cost Effective Portable Solar Photovoltaic Water Pumping System

  • Parmar, Richa;Banerjee, Chandan;Tripathi, Arun K.
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • Solar water pumping system (SWPS) is reliable and beneficial for Indian farmers in irrigation and crop production without accessing utility. The capability of easy installation and deployment, makes it an attractive option in remote areas without grid access. The selection of portable solar based pumps is pertaining to its longer life and economic viability due to lower running cost. The work presented in this manuscript intends to demonstrate performance analysis of portable systems. Consequent investigation reveals PSWS as the emerging option for rural household and marginal farmers. This can be attributed to the fact that, a considerable portion (around 45.7%) of the country's land is farmland and irrigation options are yet to reach farmers who entirely rely on rain water at present for harvesting of the crops. According to census 2010-2011 tube wells are the main source for irrigation amongst all other sources followed by canals. Out of the total 64.57-million-hectare net irrigation area, 48.16% is accounted by small and marginal holdings, 43.77% by semi-medium and medium holdings, and 8.07% by large holdings. As per 2015-16 census data, nearly 100 million farming households would struggle to make ends meet. The work included in this manuscript, presents the performance of different commercial brands and different technologies of DC surface solar water micro pumping systems have been studied (specifically, the centrifugal and reciprocating type pumps have been considered for analysis). The performance of the pumping systems has been analyzed and data is evaluated in terms of quantity of water impelled for specific head. The reciprocating pump has been observed to deliver the best system efficiency.