• Title/Summary/Keyword: smooth solution

Search Result 459, Processing Time 0.025 seconds

THE FORMULATION OF LINEAR THEORY OF A REFLECTED SHOCK IN CYLINDRICAL GEOMETRY

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.543-559
    • /
    • 2002
  • In this paper we formulate the linear theory for compressible fluids in cylindrical geometry with small perturbation at the material interface. We derive the first order equations in the smooth regions, boundary conditions at the shock fronts and the contact interface by linearizing the Euler equations and Rankine-Hugoniot conditions. The small amplitude solution formulated in this paper will be important for calibration of results from full numerical simulation of compressible fluids in cylindrical geometry.

ON A MOVING GRID NUMBERICAL SCHEME FOR HAMILTON-JACOBI EQUATIONS

  • Hong, Bum-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.249-258
    • /
    • 1996
  • Analysis by the method of characteristics shows that if f and $u_0$ are smooth and $u_0$ has compact support, then the Hamilton-Jacobi equation $$ (H-J) ^{u_t + f(u_x) = 0, x \in R, t > 0, } _{u(x, 0) = u_0(x), x \in R, } $$ has a unique $C^1$ solution u on some maximal time interval $0 \leq t < T$ for which $lim_{t \to T}u(x, t) exists uniformly; but this limiting function is not continuously differentiable.

  • PDF

CURVED DOMAIN APPROXIMATION IN DIRICHLET'S PROBLEM

  • Lee, Mi-Young;Choo, Sang-Mok;Chung, Sang-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.1075-1083
    • /
    • 2003
  • The purpose of this paper is to investigate the piecewise wise polynomial approximation for the curved boundary. We analyze the error of an approximated solution due to this approximation and then compare the approximation errors for the cases of polygonal and piecewise polynomial approximations for the curved boundary. Based on the results of analysis, p-version numerical methods for solving Dirichlet's problems are applied to any smooth curved domain.

On the continuity of the map induced by scalar-input control system

  • Shin, Chang-Eon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.695-706
    • /
    • 1996
  • In the control system $ \dot{x} = f(t,x(t)) + g(t,x(t))\dot{u}, x(0) = \bar{x}, t \in [0,T], $ this paper shows that the map from u with $L^1(m)$-topology to $x_u$ with $L^1(\mu)$-topology is Lipschitz continuous where f is $C^1$, $\mu$ is the Stieltjes measure derived from the function g which is not smooth in the variable t and $x_u$ is the solution of the above system corresponding to u under the assumption that $\dot{u}$ is bounded.

  • PDF

SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES

  • Jeong, Jae-Ug;Kim, Soo-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1175-1188
    • /
    • 2009
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, ${\eta$)-accretive mappings in quniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

A study on line balancing for serial assembly line (직렬 조립라인의 라인밸런싱에 관한 연구)

  • 장석호;이노성;안인석;박승규;최준열;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1123-1128
    • /
    • 1993
  • In this paper, utilizing the line balancing algorithm proposed to deal with various situations of automated assembly line, the optimal solution can be derived by the branch and bound method of analysis. By the application of line balancing algorithm to telephone assembly line, thoughput is improved by 3.38%. Therefore, in the proposed line, blicking phenomena were reduced and smooth line-flow was achieved, and uniform distribution of utilization rate of each machine is obtained.

  • PDF

CUBIC SPLINE METHOD FOR SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS

  • Al Said, Eisa-A.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.759-770
    • /
    • 1998
  • In this paper we use uniform cubic spline polynomials to derive some new consistency relations. These relations are then used to develop a numerical method for computing smooth approxi-mations to the solution and its first second as well as third derivatives for a second order boundary value problem. The proesent method out-performs other collocations finite-difference and splines methods of the same order. numerical illustratiosn are provided to demonstrate the practical use of our method.

ROLLING STONES WITH NONCONVEX SIDES I: REGULARITY THEORY

  • Lee, Ki-Ahm;Rhee, Eun-Jai
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.265-291
    • /
    • 2012
  • In this paper, we consider the regularity theory and the existence of smooth solution of a degenerate fully nonlinear equation describing the evolution of the rolling stones with nonconvex sides: $\{M(h)=h_t-F(t,z,z^{\alpha}h_{zz})\;in\;\{0<z{\leq}1\}{\times}[0,T] \\ h_t(z,t)=H(h_z(z,t),h)\;{on}\;\{z=0\}$. We establish the Schauder theory for $C^{2,{\alpha}}$-regularity of h.

$L_q$ estimation on the least energy solutions

  • Pahk, Dae-Hyeon;Park, Sang-Don
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.329-339
    • /
    • 1995
  • Let us consider the Neumann problem for a quasilinear equation $$ (I_\varepsilon) {\varepsilon^m div($\mid$\nabla_u$\mid$^{m-2}\nabla_u) - u$\mid$u$\mid$^{m-2} + f(u) = 0 in \Omega {\frac{\partial\nu}{\partial u} = 0 on \partial\Omega. $$ where $1 < m < N, N \geq 2, \varepsilon > 0, \Omega$ is a smooth bounded domain in $R^n$ and $\nu$ is the unit outer normal vector to $\partial\Omega$.

  • PDF

EXISTENCE OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC SYSTEMS

  • Miao, Qing;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper, we are concerned with the quasilinear elliptic systems with boundary blow-up conditions in a smooth bounded domain. Using the method of lower and upper solutions, we prove the sufficient conditions for the existence of the positive solution. Our main results are new and extend the results in [Mingxin Wang, Lei Wei, Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear Analysis(In Press)].