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CURVED DOMAIN APPROXIMATION
IN DIRICHLET’S PROBLEM

MIYOUNG LEE, SANG MoK CH0OO, AND SANG KwON CHUNG

ABSTRACT. The purpose of this paper is to investigate the piece-
wise polynomial approximation for the curved boundary. We ana-
lyze the error of an approximated solution due to this approxima-
tion and then compare the approximation errors for the cases of
polygonal and piecewise polynomial approximations for the curved
boundary. Based on the results of analysis, p-version numerical
methods for solving Dirichlet’s problems are applied to any smooth
curved domain.

1. Introduction

We consider the Poisson equation
(1.1) —Au=F inQ,
with the Dirichlet boundary condition
=0 on 0%,

where F' € C*(Q2). Here Q is a bounded domain in the plane with
an infinitely differentiable curved boundary 90 which may be neither
polygonal nor polynomial.

Tt is usually assumed that the boundary 9 of €2 is either polygo-
nal structures or polynomials when some numerical methods are imple-
mented and corresponding numerical estimations are obtained(see (1, 2,
3, 4]). Thus if a curved boundary is neither polygonal nor polynomial,
these results may not be held.
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Strang and Berger [5] and Thomée [6] obtained the error estimates
for the following equation

(1.2) —Auh =F in Qh, Up = 0 on BQh,

where a polygonal domain §2;, approximates a curved domain € and h
is the maximum length of the edges of 9€2;. Due to these theoretical re-
sults, the implementation of the numerical hA-version method to a curved
domain is meaningful.

To obtain more accurate results for the numerical solution on domains
with curved boundary, we should apply a p-version method to the curved
boundary. But we are aware of no studies that have examined p-version
boundary approximation.

The purpose of this paper is to generalize the polygonal boundary
approximation using polynomial approximation. We will approximate
the curved boundary by a piecewise polynomial boundary and analyze
the errors of the approximated solution due to this polynomial bound-
ary approximation. In section 2, the error estimates in the maximum
norm are discussed. In section 3, the L?-error estimates for gradients of
numerical solutions are discussed.

2. Error estimates in the maximum-norm

We assume that the boundary 0 is a union of subboundaries (f;(s),
gi(s)) such that

00 = Ur<i<e{(fi(5),9:(s)) : 0 < s < 1}
with
(fi(1),9:(1)) = (£i+1(0), 9:+1(0)), (fr(1), gx(1)) = (/1(0), 91(0)),
where f;, gi € C[0,1]. Let ©, be the curved domain with boundary
0 = Ur<i<k{(ILi(s), ¥i(s)) : 0 < s < 1},

where II; and ¥; be the Lagrange interpolating polynomials of degree
p; satisfying

14 4 14 14

Hi(;i)=fi(;i), ‘I/i(;i 10
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Then the corresponding polynomial approximation problem for (1.1)
becomes

(2.1) —Aup, =F in £, up =0 on 0§),.
Let | - |o denote the sup-norm in Q and || - || denote Ly-norm over

Q, |ulm,o = max|q<m |D*ulq and |z = |(z1,22)|* = 23 + 3.
Using the maximum principle, we obtain the following theorem.

THEOREM 2.1. Let F € C®({) where Q 2 Q. Then there exists a
constant C which depends only on ) such that
(pi+1 1 1
lu— Up|QnQ,, < Clrg%xkﬂfip )|[0,1]m(}7i
(pi+1) 1 Ly p.
|9; l[o’l]pi+1(pz‘) HEq,
where QN Y, = (RN Q) UL NQ,) and fi(piJrl) is the (p; + 1)st
derivative of f;.

Proof. Let d{z,2) be the distance between {2 and z. Let
Qf = U1§i§k{l‘ : d(.’L‘,Qz) < ei},

)PH—I

y

where
o8 = {(fi(s),9:(s)) : 0 < s < 1},
- '(Pi+1) 1 l pi+l (Pi+1) 1 l pi+1
€; matX{|fz |[O’1]P_i+1(Pi) ) |9, 1[0,1]pi+1(pi) }

so that QU 2, C Q¢ C Q for large p.
Let u¢ be the solution of

—Au*=F in Q°, u* =0 on O0F.
Note that 9Q¢ € C™ except finite number of points. Then for z €
002 U 89, there exists y, € 0Q° with d(x, 002°) = d(z, y;). Since u® —u
is harmonic in 2, we obtain for some C'
[u® — ulo < |uf — ufon

= sup [u(ys) — u’(z)|
z€IN

< sup |yz — z|juli, Qe
z€EIN

< max €fuffy, o
< Cmaxe;|Au®
< Cmaxe|Flg.

Qe
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On the other hand

lup — ula, < |up —uflaq,

= sup |u(y;) —u(z)]
z€9Q,

< sup [yo — zf|ufy,0

T€IN,
< 2max €|ufl; g
< C max ;| Auf|qe

< Cmaxe¢;|Flg.
Using triangle inequality, we obtain the desired result. 0

REMARK 2.1. Let {P;}}' be a sequence of points on 90 with Py =
Py and €2, be a polygonally approximated domain with the maximum
length h of edges in a triangulation for §2),. Thomée [5] obtained for
convex domain {2

lu - ’U,h,Qh S Ch2.
Thus the errors of h-version and p-version are

1
|u = unlenne, = Ol53),

1
[ = wplannn, = O(—ywar)

respectively, whenever |P,P;yq| = |Pi+1Pi+2' l, @ and ¢(@ are bounded
for g =0,...,N. Therefore we can see that a curved boundary approx-
imation is more accurate than a polygonal boundary approximation.

In most numerical studies on a curved domain, the curved boundary
is polynomial. In this case, = Q, for some p. Thus the errors of
h-version and p-version are, respectively,

1
m),
1
D)

!u - uh,Qh = O(

|u - uP|Qh = O(
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3. Ls-error estimates for gradients

Without loss of generality, we may assume that the origin belongs to
Q and there exists a positive constant p such that

x-n(z) > p >0, x € 092,

where 7n(z) is the outward unit normal vector to the boundary 9Q at

a point z. For example, a convex domain satisfies the above condition.

Let s(x) be the unit tangent vector to the boundary 0f2 at a point z.
Using the Green’s identity, we obtain the following lemma.

LEMMA 3.1. There exists a constant C such that for a harmonic
function v in 2N,

1|"‘“|la(mnp) |"“|a(ﬂrmp),

where 2 an and denote differentiations in the direction of normal and
tangent vector, respectwely
Proof. Integrating the following identity
2
0 ov 0 Ov Ov
—2— 2 ———A =0
j;l[(?mk{ (Oxj)} Ox; (@ 8:v38 k]+ Zxk v=

over 2N, and using Green’s identity, we obtain for a harmonic function
v

2
ov Ov Ov
3.1 / { § (o —2——]ds=0,
31) B(NDy) = Oz or

where 6” denotes the derivative in direction of x = (x1,x3). Note that
for unit vectors n = (n1,7m2) and s = (—n2,7m1), it holds that

ov )2 = 81} ov.
(3:2) ; ;) = Gy TG
Setting

zon=lzlen  zos=lzlen D= (@ 42,2 e
’ or " on °Os ’
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and using (3.2), we may rewrite (3.1) as

ov Ov ., ov Ov
— ZTn(=)* — 2z, ds =0.
/mmp)[ N - ]n u

Thus we obtain for € > 0

v,
Tn(=)*||z|ds
/amp) (Gl
ov ., Ov dv
3.3 = / [mn —) — 2z, ] ds
(33) I G e

1,,0v,
< L(Qngp)[<mn+2|xs| )(Ge)? + (G2 el

Since there exists a positive constant y such that
z-n>u>0, x € 09,

and 012, is any kind of polynomial approximation of 052, there exists a
positive constant A such that for sufficiently large p

z-1n>A>0, x € 00,
Therefore we obtain
x-n > min{u, A} > 0, z €9(2NQ,).

Since there exist constants r¢ and r; such that for all z € 9(2 N Q,),
0 < rp < ||z|| £ r1, we can choose € in (3.3) such that

Zn||lz]| — 2|zs|ellz]| > min{p, A} — 2r1e > 0, z € 0(2N Q).
It completes the desired proof. a

Using the Green’s formula, we obtain the following theorem.
THEOREM 3.1. There exists a constant C depending on u such that

[Vu — Vupllang,

(pi+1) pitd ) (pit1) 1. p+2
<Cm — .
1<a<xk{|f llo, ( ) 2, lg; '[0,1](pi) 2}



Curved domain approximation in Dirichlet’s problem 1081

Proof. Since e, = u — up is a harmonic function in 2N, using
Lemma 3.1, we obtain for some constant C

o
(3.4) uv%ﬁmn=1/ ep 222 ds
» o Jaane,) oM

e
< ||€p”a(9nszp)||Ef‘||a(mﬂp)

(A
< C||ep||a(nmnp)|a—spia(nmp)-
Note that

e
(3.5) la—;b(mﬂp) | 8 Eloana,)nen + |—-|a(mﬂ o,
and the second term in the righthand side of (3.5) is

I |6(anp)naﬁ sup Vu(z,) - s(zp)|-
TpE€a(nnnp)Nony,

Let x, = (I;(s0), ¥i(so0)) and Z = (fi(s0), g:(s0)). Then we obtain
(3.6) [Vu(zp) - s(zp)| < V() - s(zp)| + Cllzp — Z|

< C{lcos(5; £ 0)] + ey — 21}

< Cfsin0 + |la, — 2},

where 6 is the acute angle between the tangential vectors s{z,) on 9%,
and s(Z) on OQ.
Using the smoothness of functions f;, g;, IL;, ¥;, the inequality (3.6)
becomes
IVu(zp) - s(zp)l
< C{sinf + ||z, — &||}

< C{y/(fi(s0) — M;(s0))? + (g;(s0) — ¥i(s0))? + llzp — Z|}.
Thus we obtain
(3.7)

Oeyp
|_ lacane,)nan,

(pi-+1) +1  (pit1) Lipit1
< Di \Pi
ch%ﬂf oG 18 o (P )

(p1+1) 1 1 Pi+1 (pz+1) 1 _l' pq;-f—].
+1r£1a<xk{|f ljo, 1]p +1( ) |g; l[o’l]pi+1(pi) }
( )

(pi+1) (pi+1) 1 +1
< C max Di
S0 <k{|f l |g |[ (p@) }
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Similarly we obtain the inequality (3.7) for I%%'a(gmgp)maﬂ. Applying
(3.7) and Theorem 2.1 to (3.4), we obtain the desired results. O

REMARK 3.1. Thomée [5] obtained for a convex domain
|Vu — Vo, < Ch3,

where h is the maximum length of the edges in a triangulation for Q.
Thus we obtain similar results as in Remark 2.1.

4. Concluding remark

We approximated a curved boundary by polynomials of variable de-
grees and obtained the corresponding error estimates. Since a piecewise
polynomial boundary approximation for a curved boundary is more ac-
curate than that a polygonal boundary approximation, we were able to
show that the numerical solution by p-version methods is more accurate
than that obtained by using the usual boundary approximation for a
curved boundary.
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