THE FORMULATION OF LINEAR THEORY OF A REFLECTED SHOCK IN CYLINDRICAL GEOMETRY

  • Kim, Ju-Hong (Department of Mathematics, Sunghsin Women's University)
  • Published : 2002.05.01

Abstract

In this paper we formulate the linear theory for compressible fluids in cylindrical geometry with small perturbation at the material interface. We derive the first order equations in the smooth regions, boundary conditions at the shock fronts and the contact interface by linearizing the Euler equations and Rankine-Hugoniot conditions. The small amplitude solution formulated in this paper will be important for calibration of results from full numerical simulation of compressible fluids in cylindrical geometry.

Keywords

References

  1. Mathematical Methods for Physicists G. Arfken
  2. Astrophys. J. v.341 Instabilities and Nonradial Motion in SN 1987A D. Arnett;B. Fryxell;E. Muller
  3. Matrix Tensor Methods in Continuum Mechanics S. F. Borg
  4. A Mathematical Introduction to Fluid Mechanics A. J. Chorin;J. E. Marsden
  5. Supersonic flow and shock waves R. Courant;K. O. Friedrichs
  6. Phys. Fluids v.29 no.2 Rayleigh-Tayor stability for a normal shock wave-density discontinuity interaction G. Fraley
  7. Phys. Rev. Lett. v.71 no.21 Quantitative theory of Richtmyer-Meshkov instability J. Grove;R. Holmes;D. H. Sharp;Y. Yang;Q. Zhang
  8. J. fluid Mech v.295 Nonlinear Growth of a Shock-Accelerated Instability of a Thin Fluid Layer J. W. Jacobs;D. G. Jenkins;D. L. Klein;R. F. Benjamin
  9. Ph. D. thesis, SUNY at Stony Brook Small amplitude theory of Richtmyer-Meshkov instability in cylindrical and spherical geometries J. H. Kim
  10. NASA Tech. Trans. v.F-13 Instability of a shock wave accelerated interface between two gases E. E. Meshkov
  11. Comm. Pure. Appl. Math. v.13 Taylor Instability in Shock Acceleration of Compressible Fluids R. D. Richtmyer
  12. J. Phys. D: Appl. Phys. v.13 The stability of multiple-shell ICF targets P. D. Roberts;S. J. Rose;P. C. Thompson;R. J. Wright
  13. Duke University Mathematics Series Boundary Value Problem for Quasilinear Hyperbolic Systems Li Tatsien;Yu Wenci
  14. Shock Waves and Reaction-Diffusion Equations Joel Smoller
  15. Phys. Fluids v.6 no.5 Small Amplitude Theory of Richtmyer-Meshkov Instability Y. Yang;Q. Zhang;D. H. Sharp