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SENSITIVITY ANALYSIS FOR A SYSTEM OF
GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL
INCLUSIONS WITH (A, 7n)-ACCRETIVE MAPPINGS
IN BANACH SPACES

JAE UG JEONG AND SO0 HwAN Kim

ABSTRACT. In this paper, we study the behavior and sensitivity analysis
of the solution set for a new system of parametric generalized nonlinear
mixed quasi-variational inclusions with (A,n)-accretive mappings in g-
uniformly smooth Banach spaces. The present results improve and extend
many known results in the literature.

1. Introduction

Sensitivity analysis of solutions of variational inequalities with single-valued
mappings has been studied by many authors via quite different techniques.

By using the projection method, Dafermos [2], Yen [9], Mukherjee and Verma
[6], Noor [7], and Pan [8] studied the sensitivity analysis of solutions of some
variational inequalities with single-valued mappings in finite-dimensional spaces
or Hilbert spaces.

In 2004, using the concept and technique of resolvent operators, Agawal
et. al [1] introduced and studied the behavior and sensitivity analysis of the
solution set for a system of parametric variational inclusions in a Hilbert space
H, which is called the system of parametric generalized nonlinear mixed quasi-
variational inclusion problem:

For a given two nonempty open subsets 2 and A of H in which the param-
eters w and X take values, two maximal monotone mappings M : H x Q — 27
and N : Hx A — 2H nonlinear single-valued mappings 4,5 : H x Q) — H and
B,T:H xA— H, find (z,y) € H x H such that

0€x—y+p(Ay,w) + S(y,w)) + pM(z,w),
0cy—xz+~y(B(x,\) +T(x,\) +yN(y,\),

where p, A > 0 are two constants.
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In this paper, we study the behavior and sensitivity analysis of the solution
set for a system of parametric generalized nonlinear mixed quasi-variational
inclusions with (A4, n)-accretive mappings in g-uniformly smooth Banach spaces.
The present results improve and extend many known results in the literature.

2. Preliminaries

Let E be a real Banach space with dual space E*, (-,-) be the dual pair
between E and E* and 2¥ denote the family of all the nonempty subsets of E.
The generalized duality mapping J, : £ — 2" is defined by

Jo(x) = {f € B*[(z, f*) = |l=|" and | f*||=|lz["""}, V2 € E,

where ¢ > 1 is a constant. In particular, J; is the usual normalized duality
mapping. It is known that, in general, J,(z) = ||z||972J2(x) for all z # 0 and
Jy is single-valued if E* is strictly convex. If ' = H is a Hilbert space, then
Jo becomes the identity mapping of H.

The modulus of smoothness of F is the function pg : [0,00) — [0, 00) defined
by

1
pe(t) =sup{S(le +yll +llz —yll) =1z < L[yl < ¢}

A Banach space F is called uniformly smooth if lim;_,q p%(t) = 0. E is called

g-uniformly smooth if there exists a constant ¢ > 0 such that pg(t) < ct?,
g > 1. Note that J, is single-valued if F is uniformly smooth.

We consider now a system of parametric generalized nonlinear mixed quasi-
variational inclusions with (A, n)-accretive mappings in g-uniformly smooth
Banach spaces. To this end, let Q and A be two nonempty open subsets of
in which the parameters w and A take values, S,T : E x Q — E and U,V :
E x A — E be nonlinear single-valued mappings. Let M : E x Q — 2F and
N : ExA — 2% be set-valued mappings such that for each given (w, \) € Qx A,
M(-,w) and N(-,)\) : E — 2F are (A,n)-accretive mappings. For each fixed
(w,\) € Q x A, the system of parametric generalized nonlinear mixed quasi-
variational inclusions with (A, n)-accretive mappings in g¢-uniformly smooth
Banach spaces consist of finding (z,y) € E x E such that

0€A(@) —y+p(Sy,w) + T(y,w)) + pM(z,w),
(2.1) 0€A(y) —z+~v(U(z,\) + V(z,\) + YN (y, A),

where p > 0 and v > 0 are two constants.

We now discuss some special cases.

Case I. Let £ = H be a Hilbert space, A = I, the identity mappings, 2 and
A be two nonempty open subsets of H in which the parameters w and A takes
values. Let ¢1 : HxQ — RU{+o0} and ¢3 : H x A — RU{+o00} be functionals
such that for (z,w) € H x Q and (y,A) € H x A, 0¢1(-,w) and 9¢a(-, \)
denote the subdifferential of proper convex lower semicontinuous functions ¢
and ¢g, respectively. Let M(-,w) = 0¢1(-,w) and N(-,\) = 9¢a(-, A) for all
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(w,A\) € 2 x A. Then problem (2.1) is equivalent to finding (z*,y*) € H x H
such that
<p(S(y*7W> + T(y*aw)) +a* — y*,l' - $*> > p¢1($*,W) - pd)l(wi)v
(22) (UEA)+V (@A) +y" —a™ 2 —y") 2792y, A) — y¢a(, A)
for all x € H, which is called the system of parametric generalized nonlinear
mixed variational inequalities in Hilbert spaces [1].
Case II. Let K be a nonempty closed convex subset of H and ¢; = Ig
(i = 1,2) are the indicator functions of K. Then problem (2.2) reduces to the
problem of finding (z*,y*) € K x K such that
(p(S(y*,w) + T(y*7w>) + T — y*,x - !L‘*> > 07
(YU A) + V(" A) +y" —a" e —y*) >0
for all x € K, which is called the system of parametric generalized nonlinear

quasi-variational inequalities in Hilbert spaces [1].

Definition 2.1. Let A: E — E, n: EXE — FE be two single-valued mappings.
Then a multivalued mapping M : E — 2F is said to be
(i) accretive if

(u—wv,Jy(z—y)) >0, Vr,y€ E,ueM@),veMy);
(i) m-relaxed n-accretive if there exists a constant m > 0 such that
(u—=wv,Jy(n(z,9))) = —mllz —y[l|*, Vo,y c E,ue M(zx),ve My);

(iil) (A,n)-accretive if M is m-relaxed n-accretive and (A+ pM)(E) = E for
every p > 0.

Definition 2.2. A mapping S : E x 2 — FE is said to be
(i) d-strongly accretive with respect to the first argument, § € (0, 1), if

(S(z,w) — S(y,w), Jy(x —y)) > dllz —y||?, Vz,y€ E;

(i) Ag-Lipschitz continuous with respect to the first argument if there exists
a constant Ag > 0 such that

15(z,w) = S(y, W)l < Asllz —yll, V(z,y,w) € EXx ExQ.

Definition 2.3. A single-valued mapping A : E — F is said to be
(i) n-accretive if
(A(2) — Ay), Jo(n(z,9))) 2 0, Vz,y € E;
(ii) strictly n-accretive if A is n-accretive and equality holds if and only if

T =1y.
(iil) y-strongly n-accretive if there exists a constant vy > 0 such that

(Alz) = A(y), Jo(n(z,9))) = Yz =yl Yo,y € E.
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If A: E — E is a strictly n-accretive mapping and M : E — 2F is an (4, 7)-
accretive mapping, then for a constant p > 0, the resolvent operator associated
with A and M is defined by

Rﬁil(“) =(A+pM) ' (u), Vue€E.
It is well known that Rf/f’?p is a single-valued mapping [5].

Remark 2.1. Since M is an (A, n)-accretive mapping with respect to the first
argument, for any fixed w € ), we define

Rff?.,w),p(u) = (A4 pM(-,w)) " H(u), Yue D(M),

which is called the parametric resolvent operator associated with A and M (-, w).

Remark 2.2. Resolvent operators associated with (A,n)-accretive mappings
include as special cases the corresponding resolvent operators associated with
(H,n)-accretive operators [8], (H,n)-monotone operators [10], H-accretive op-
erators [4], H-monotone operators [3], A-monotone operators [11], the classical
m-accretive and maximal monotone operators [14].

Now we need some lemmas which will be used in the proofs for the main
results in the next section.

Lemma 2.1 ([12]). Let E be a real uniformly smooth Banach space. Then E
is g-uniformly smooth if and only if there exists a constant cq > 0 such that for
allz,ye E

[z +yl|* < llz]|* 4 q{y, Jq(2)) + cqllyl*.

Lemma 2.2 ([5]). Let E be a g-uniformly smooth Banach space,n: EXE — E
be T-Lipschitz continuous, A : E — E be r-strongly n-accretive mapping and
M : E — 2F be an (A,n)-accretive mapping. Then the resolvent operator

Rf/f?‘ W E — FE is :j;:n -Lipschitz continuous, i.e.,
Am Am Tq_l
IR 0) = Ry y 0 € Tl =], Vv €

where p € (0, ) is a constant.

3. Sensitivity analysis of solution set

Throughout the rest of this paper, we always assume that F is a real g¢-
uniformly smooth Banach space. First of all, we prove the following lemma.

Lemma 3.1. For all fized (w,\) € Q x A, (Z(w, A),§(w, N)) is a solution of
the system of parametric generalized nonlinear quasi-variational inclusions with
(A, n)-accretive mapping in g-uniformly smooth Banach space (2.1) if and only
if for some given p,y > 0, the mapping F : E x Q x A — E defined by
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F(z,w,y) = Ryl ) BN a0 (@ = 1T +V)(@, X))
(3.1) = (S + )Ry 5 (@ = (U +V)(@,N)),w)]
has a fized point .

Proof. For each fixed (w,A) € Q x A, let (Z(w,A),§(w,A)) be a solution of
problem (2.1). Then for given p,v > 0,

0e A('f) - g + p(S(gaw) + T(g7w)) + pM(j7w)7
0€ A(y) —2+~(U(Z,A) + V(Z,A)) + YN (7, A),
which implies that

Thus, we obtain
(A+pM(w) ™
(A+yNA) T

8
L
™)
T »n
+ o+
S 3
T e
>/ S—
o
< ®

i.e.,
Rt oy pli = (S +T)(5,w)] = 7,
Ry{ a4l = 21U+ V)@ N)] = 7.
Hence, we have
F =Ryl BN 4@ = (U +V)(@N)
—p(S+T)RY( 5 4@ =AU +V)(@,N)),w)]
= F(z,w, \).

This means that T is a fixed point of F(x,w, \).
Now, for any fixed point (w, A) € (2 x A), let Z be a fixed point of F(z,w, ).
By the definition of F,

z=F(Z,w,A)
= Ryl RN (@ = (U +V)(, 1))
— p(S+ TRy 5 (& = (U +V)(z,1)),w)].
Let
7= Ry x (& = 1(U+V)(@, ).
Then we have

T =Ry 5= p(S+T)(Gw))

An
M(-,w),p

7= (A+ pM ()" [ = (S +T) (7. ),

By the definitions of R and Rﬁ’a A We get
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7= (A+yN(A) Tz (U +T)(F, ),
which implies that

<

—p(S+T)(y,w) € [A+ pM(-,w)](2),
(U +V)(#,A) € [A+yN(M](@)-

8l

Hence
0e A(j) —y+ p(S(ga w) + T(g7w)) + pM(i‘,UJ),
0 € A@G) — 7+ (U@, \) + V(@A) + N (G \).
This completes the proof. O

Theorem 3.1. Let A: E - E, SST: ExQ— E, UV :ExA— FE be five
mappings and M : Ex Q — 2F, N : E x A — 2F be two set-valued mappings
satisfying the following conditions:
(i) A is r-strongly n-accertive mapping,
(ii) S is Ag-Lipschitz continuous with respect to the first argument,
(iil) T is §-strongly accretive and Ap-Lipschitz continuous with respect to
the first argument,
(iv) U is A\y-Lipschitz continuous with respect to the first argument,
(v) V is a-strongly accretive and Ay -Lipschitz continuous with respect to
the first argument,
(vi) M and N are (A,n)-accretive with respect to the first argument.

Suppose that there exist p > 0 and v > 0 such that

— om
1—aqv+cqvq>\‘é<(7 P 0,

Ta-1
¥ —Am
(3.2) L= qpd+cqp®p < (== — pAs)".
Then

(1) the mapping F : ExQxA — E defined by (3.1) is a uniform 0-contractive
mapping with respect to (w, ) € Q x A.

(2) for each (w,\) € Q x A, the system of parametric generalized non-
linear mized quasi-variational inclusions with (A, n)-accretive mappings in q-
uniformly smooth Banach spaces (2.1) has a nonempty solution set S(w, \) and
S(wA) is a closed subset of E.

Proof. (1) By the definition of F', for any x,y € E, we have
(3.3)

||F(x,w,)\) - F(yawaA)H
= [ R3T ) S BN sy 4 (@ = YU +V)(2,0)
= (S +TY Ry 5 (@ = (U +V)(@,A)),w)]
— Ryl JL BN 5y (0 = YU + V) (5, M)
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= (S + T)RY( ),y = 7T + V), ), W)l
a1 An
oI BR ) o = U+ V) )
A,
—p(S+ TRy 5@ =2(U +V)(2,))),0)

— (R 3y, = 7T + V)5, )
— p(S +T) R 5, = 7(U + V)5, N),w))l|

—1

IN

T4
WHR?’,{-]«\M(I — (U +V)(x, X)) — Rﬁ’z,,\m(y —yU+V)(y, )

- p[T(R}@’(” (@ =T +V)(2,)),w)
—T(RY( 5, = (U +V)(y, V), )|

qg—1

IN

ISR ) (& = (U + V) X))

- swﬁg?m(y — U+ V) ) w)]

From Lemma 2.1, the d-strong accretivity and Ap-Lipschitz continuity of T it
follows that

(3.4)

IR 3y (@ = HU + V) (@A) = Ryl (4= 1(U +V)(y, V)
— TRy ) (@ =AU + V)@, N)),w)
— TR 5y, (0 = AU + V) (y, A)), w) |
<R ) (@ =AU + V) (@A) = R (0 =T + V)5, M)
—ap(T(Ry( (@ =AU + V)(@, ), w)
— TRy 5, (0 =AU + V), X)), Jo(R! 5 (2 = 7 (U + V) (, X))
— Ry 5, =7 U+ V) (M)
+ e | TR ) (= YU + V) (@, 1), w)
— TR 5y, (0 = YU +V)(y, ), w)]°
<(1- qpé + egp ANRY! ) (2 = YU + V) (@, 1)
— Ryl (0= (U + V)5, )]

q—1

< (1-qps+ cqp%)([_ o) e =y =y (V@) = V(g )]
AU, N) = Ul )
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Since V is a-strongly accretive and Ay-Lipschitz continuous with respect to
the first argument,

(3.5) |z —y—y(V(z,A) = V(y, )]
< lz=yll* = av(Vi(z, A) = V(y, A), Jo(z — y))
+ e[V (@, A) = V(y, M*
< (1= agqy + gAY |z — yl”.
By the Ay-Lipschitz continuity of U, we have
(3.6) [U(z,A) = Uy, M)l < Avllz —yll.
By the Ag-Lipschitz continuity of S, (3.5) and (3.6), we obtain
(3.7)
ISCRAT (@ = 4(U + V) (@, \)w) — SR (5 — AU + V), A),) |

< ASIRY(  (@ = (U + V) (2, 0),w) = Ryl 5 (=7 (U + V) (1, 1))
q—1

-
<A
- Sr—)\m

< /\57'(1_1
—r—Am
By (3.3)-(3.7), we have

| F(z,w,\) = F(y,w, A

ra—1 a1
<(

(lz =y =y(V(z, ) = V(y, M)l +[IU (2, A) = Uy, M)

1
[(1 = agy + cgy?AY) 7+ ulllz =yl

1
(A = agy +cyIA]) 7 +yAu]

r—pm’r—Am

1
[(1 = gpd + cqp? A7) + pAs]llz — yl|

a1 a1
)6162(|z — y||

= ( )

r—pm’r—Am
(3-8) =Ollz -yl

where 6; = (1 — agy + cq’yq)\“l/)i + v, 02 = (1 — gpd + cqpq/\qT)% + pAs and
0 = ([j’;;)(;f;;)eleg. It follows from condition (3.2) that # < 1. Thus,
(3.8) implies that F' is a contractive mapping which is uniform with respect to
(w,A) € Q x A

(2) Since F(z,w,A) is a uniform 6-contractive mapping with respect to
(w,A\) € Q x A, by the Banach fixed point theorem, F(z,w,\) has a fixed
point Z(w, A) for each (w,\) € 2 x A. By Lemma 3.1, S(w,\) # ¢. For each
(w,A) € Ax A, let (xn,yn) € S(w, A) and x,, — x0, Yn — Yo as n — 0o. Then
we have

ZTp € F(zy,w,A), n=12....
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By (1), we have
| F(atn,w,3) = Fla,w, V|| < 0] — .
It follows that
[zo — Fzo,w, N[l < w0 — @l + lzn — F(zn,w, A
[ F (@, w, A) — Flao,w, )|
< L+ 0)[|zn — ol
—0 as n—oo.

Hence we have zy € F(zg,w,A). From Lemma 3.1 we have (z¢,y0) € S(w, A).
Therefore S(w, A) is a nonempty closed subset of E. O

Theorem 3.2. Under the hypotheses of Theorem 3.1, further assume that for
any x,y € E, the mappings w — S(z,w), w — T(z,w), A\ — U(y,\) and
A= V(y,\) are Lipschitz continuous with constants lg,lr,ly,ly, respectively.
Suppose that for any (t,w.@) € E x Qx Q and (2, \,\) € E x A x A,

A, A, _
IR&D ()= RED ()] < pllw — o,
A, A, 3
(3.9) IRE () = RED o (] < A=Al
where > 0 and T > 0 are two constants.
Then the solution (x(w, \),y(w, X)) for the system of parametric generalized

nonlinear mized quasi-variational inclusions with (A, n)-accretive mappings in
g-uniformly smooth Banach spaces (2.1) is Lipschitz continuous.

Proof. For each (w, \), (@,\) € Qx A, by Theorem 3.1, S(w, \) and (S(@, \) are
both nonempty closed subsets. Also, F(z,w,)\) and F(z,, \) are contractive
mappings with same constant § € (0,1) and have fixed points z(w, ) and
z(w, \), respectively. For any fixed (w,\), (@, ) € 2 x A, we have

(@, A) = 2(@, A

By condition (3.9), we have
(3.11) | F(x ),w, A) — F(z(@,\), @, ]|

(@,
<IRET L JIRET | (@(@,3) = (U + V)(2(@, 1), \)
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— (S + YRy 5y (2@, 3) = AU + V) ((@, ), V), w)]
- Ryt w)pmzf 3y (@@ ) = (U + V) (@(@, 1), 1))
= p(S+ DRy, (2(@,3) =AU + V) (@@, 2), 1), )]
+ IR ) o[ R N( N (@, 3) =AU + V) (@, 1), V),
— (S + TR 5, (@(@,3) = 4 (U + V) (@(@, 1), 1), )]
~ Ry 1B M(m( A) =AU+ V)(@(@,2), 1)
— (S +TY (R 5, (@(@,7) = 4(U + V) (@(@, %), ), @)
< IR M(m(@ N =AU + V) (@ 3), )
Ry 5 (@@, 0) =AU +V)(2(@,3),2)
P{T(RY] 5y (@@, 3) = (U + V)(@(@, ), 1)), w)
= TRy 5, (@@, ) = AU + V) (@(@, 1), ), &) |
+ ISRy (@(@,X) = (U + V) (2(@, 1), 1), w)
— SR 5, (3@, 3) = 9(U + V)(@(@, 1), 1), )]
+ pllw — @
< TR (0 2) 2 (U + V) (), )
R( 5 4 @(@,3) = (U + V)(2(@,A), 1)
P{T(RY] 5y (@@, 3) =y (U + V)(@(@, ), ), w)
) )(2(@, 1), A

+ ol AT 7<x<w,ﬂ> — AU + V)@, 3), M) )|
TRED L (@(@,3) = 1(U +V)(x(@, %), 1),3)|
+PITREY (2@, %) = AU + V)(a(@, 1), 1), &)
STRET S (@(@.0) — (U + V) (a(@.3).1),0)]
+PISRED (@@, 3) = 3(U + V) (@@, X), V), w)
—SRAT L (@(@,3) = (U + V) (@@, 2, ),)]
+PISRET (@@, 3) = AU + V) (@, 3), 1), )]
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— S(Ry Ve 2y @@ 0) = (U + V) (@(@,A), 1), @)l
+ pllw — @]

The §-strongly accretivity of 7' and the Lipschitz continuity of T, U and V
imply

(312)  [IRET ) (@(@X) —5(U +V)(@(@,}).\)

< HRN( 0 (E(@A) =AU+ V)
RN( A @@ A) = (U + V) (2@
— ap(T(Ry( 5 (@(@,3) = ¥ (U + V)(2(@, 1), 1)), w)
— TRy 5y (@@, ) =AU + V)(@(@, 1), 1), ),
To(RA7 . (@@, ) = 1 (U + V) (2(@, X)
— Byl 5 (@(@,3) = (U + V) (2(@, 1), 1))
+ e |T(RYY 5y (3@, ) = 1(C + D) (a(@,X), V), w)
— TRy 5y, (@@, ) = A(C + D)(x(@, 1), 1)), w)|*
< (1= qp8 + cep AL IR 5y 4 (@(@,0) = 4 (U + V) (@(@,A), 1)
= B 5 (@(@,3) = 4(U + V) (@@, 1), V)|

. ra(q —1)7q
< (1 —gpd + cqp? A7)

€l
>
:_/
>~
N—
|
d
—
8
—
€l
>~
>
==

mﬁ(“(](ﬂf(

IV (@@, 1), 1) = V(z(@, 1), A)])*?

rala=1) 4

< (1= qpd + ¢gp" A7) (v + )7 IA = A2

By condition (3.9), we have

(3.13) RN 5o (@@, ) = ¥ (U + V) (@(@, 1), 1))
— Ryl 5, (@(@,X) = (U + V) (@(@, 1), V)|
<7x=AllL

By the Ip-Lipschitz continuity of T, we have

(3.14) IT(RY ) @@, 2) = YU + V)(@(@, 2),A), w)
—T(RY( 5 (@@, ) = 1(U +V)(2(@,2), 1), )]
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<lpllw — o]

By using same argument we can prove

(315)  |T(REY m( 2(@,3) = AU + V) (@(@, 1), 1), o)
S TR (@@, 3) ~ AU + V) (@@ 1), 1).0)]
<rrrla- Al
(816)  [S(RET ) (@(@A) (U + V)@, X),\),w)
S(Rﬁ poy @@, ) = (U + V)((@, %), 1), @)
< ISERED ) (@@ X) =AU + V)@, X)), w)

_S(RAn ),y ) )
+ISRY( ) 4 (@@, ) = (U +V)(@(@,A),\), @)
— SRy 5y, (@(@,3) = 4(U + V)(2(@,1), 1)), )|
A Tq’lfy

Slsllw =l + — U @@, 2),2) = U@, 2), Al

+||V(93(@,A),>\)— V (2@, ), V]

<tsllo— 2+ 257y a3,
BID ISR (503) =0+ V)6 9, 9).)
~SRAD (3 0) — 2+ V)((@,X),3), )]

< AsTA = Al
It follows from (3.10)-(3.17) that
(e, A) = z(@, A)|

1 741 s
< — 1—qpd ALY
= I—H[T—pm{( qpo + cqp T)qr_

+ 1A= Al + plrllw — &l + pArT[IA = M| + pls|lw - @

"y _ —
m(lU+lv)||>\ Al

ri-1 < < _
+ pAs —— (L + 1) IA = X+ pAsTA = M} + el — @]
r—Am
1 Tq_lp _
—m[r_ m(lS+ZT)+N]||W—W||
N S S VAT S
+(1_9)(T_pm)[r_pm( —qpd + cgp? A7) (I + 1v)

ra—1 -
T+ PAPT + ———pAsy (v + lv) + pAsT] A = Al
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where 6 is the constant of (3.8). This proves that z(w, \) is Lipschitz continuous
n (w,\) € 2 xA.
On the other hand,

y(w. X) = R (2(w.X) =1 (U + V) (a(w, 1), 1)),

y(@,A) = Ryl 5 (@@, A) = 9(U + V)(@(@, A), N)).
Hence, we have

ly(w, A) = y(@, N

<R 5y @@, A) = (U + V)(@(w, A), V)
— Ry 3y 4 (@@, 3) = (U + V)(@(@, 1), V)|
+ BN ) 5 @(@,3) = 1(U + V)(@(@, 1), 1))
—Rfé("m( 2(@,A) = 7(C + D)(@(@, ), M)
< j_q;m[||z<w,A>—x<w,X>—v< (@(w,A), A) = V(@(@, 2), \)]

AV (@(@,A),A) = V@@, 2), V| + 71U (2(w, A), A) = Ul@(@, A), Al
AU (@(@, 1), ) = U@(@, ), ]+ 7llA = Al

1 _ = —
—(1 = agy + ey AV [la(w, A) = 2@, Al + v A = Al
+ A lla(w, ) — 2@, M+l A = A+ 7llA = Al

ra-1 <

= 5l — agy + VAT + P Au]e(w, N) — 2@, N

q—1

T _
+[r V(g +1v) + T[] = All.

—m
It follows from the Lipschitz continuity of xz(w, ) that y(w, ) is Lipschitz
continuous. This completes the proof of Theorem 3.2. O
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