SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A,η) -ACCRETIVE MAPPINGS IN BANACH SPACES

Jae Ug Jeong and Soo Hwan Kim

ABSTRACT. In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A,η) -accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

1. Introduction

Sensitivity analysis of solutions of variational inequalities with single-valued mappings has been studied by many authors via quite different techniques.

By using the projection method, Dafermos [2], Yen [9], Mukherjee and Verma [6], Noor [7], and Pan [8] studied the sensitivity analysis of solutions of some variational inequalities with single-valued mappings in finite-dimensional spaces or Hilbert spaces.

In 2004, using the concept and technique of resolvent operators, Agawal et. al [1] introduced and studied the behavior and sensitivity analysis of the solution set for a system of parametric variational inclusions in a Hilbert space H, which is called the system of parametric generalized nonlinear mixed quasi-variational inclusion problem:

For a given two nonempty open subsets Ω and Λ of H in which the parameters ω and λ take values, two maximal monotone mappings $M: H \times \Omega \to 2^H$ and $N: H \times \Lambda \to 2^H$, nonlinear single-valued mappings $A, S: H \times \Omega \to H$ and $B, T: H \times \Lambda \to H$, find $(x, y) \in H \times H$ such that

$$0 \in x - y + \rho(A(y,\omega) + S(y,\omega)) + \rho M(x,\omega),$$

$$0 \in y - x + \gamma(B(x,\lambda) + T(x,\lambda)) + \gamma N(y,\lambda),$$

where $\rho, \lambda > 0$ are two constants.

Received September 19, 2008; Revised December 5, 2008. 2000 Mathematics Subject Classification. 49J40, 90C33.

Key words and phrases. quasi-variational inclusion, sensitivity analysis, resolvent operator, (A, η) -accretive mapping.

©2009 The Korean Mathematical Society

In this paper, we study the behavior and sensitivity analysis of the solution set for a system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, η) -accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

2. Preliminaries

Let E be a real Banach space with dual space E^* , $\langle \cdot, \cdot \rangle$ be the dual pair between E and E^* and 2^E denote the family of all the nonempty subsets of E. The generalized duality mapping $J_q: E \to 2^{E^*}$ is defined by

$$J_q(x) = \{ f \in E^* | \langle x, f^* \rangle = ||x||^q \text{ and } ||f^*|| = ||x||^{q-1} \}, \forall x \in E,$$

where q>1 is a constant. In particular, J_2 is the usual normalized duality mapping. It is known that, in general, $J_q(x)=\|x\|^{q-2}J_2(x)$ for all $x\neq 0$ and J_q is single-valued if E^* is strictly convex. If E=H is a Hilbert space, then J_2 becomes the identity mapping of H.

The modulus of smoothness of E is the function $\rho_E:[0,\infty)\to[0,\infty)$ defined by

$$\rho_E(t) = \sup \{ \frac{1}{2} (\|x + y\| + \|x - y\|) - 1 : \|x\| \le 1, \|y\| \le t \}.$$

A Banach space E is called uniformly smooth if $\lim_{t\to 0} \frac{\rho_E(t)}{t} = 0$. E is called q-uniformly smooth if there exists a constant c > 0 such that $\rho_E(t) \leq ct^q$, q > 1. Note that J_q is single-valued if E is uniformly smooth.

We consider now a system of parametric generalized nonlinear mixed quasivariational inclusions with (A,η) -accretive mappings in q-uniformly smooth Banach spaces. To this end, let Ω and Λ be two nonempty open subsets of Ein which the parameters ω and λ take values, $S,T:E\times\Omega\to E$ and $U,V:E\times\Lambda\to E$ be nonlinear single-valued mappings. Let $M:E\times\Omega\to 2^E$ and $N:E\times\Lambda\to 2^E$ be set-valued mappings such that for each given $(\omega,\lambda)\in\Omega\times\Lambda$, $M(\cdot,\omega)$ and $N(\cdot,\lambda):E\to 2^E$ are (A,η) -accretive mappings. For each fixed $(\omega,\lambda)\in\Omega\times\Lambda$, the system of parametric generalized nonlinear mixed quasivariational inclusions with (A,η) -accretive mappings in q-uniformly smooth Banach spaces consist of finding $(x,y)\in E\times E$ such that

$$0 \in A(x) - y + \rho(S(y,\omega) + T(y,\omega)) + \rho M(x,\omega),$$

$$0 \in A(y) - x + \gamma(U(x,\lambda) + V(x,\lambda)) + \gamma N(y,\lambda),$$

where $\rho > 0$ and $\gamma > 0$ are two constants.

We now discuss some special cases.

Case I. Let E=H be a Hilbert space, A=I, the identity mappings, Ω and Λ be two nonempty open subsets of H in which the parameters ω and λ takes values. Let $\phi_1: H \times \Omega \to R \cup \{+\infty\}$ and $\phi_2: H \times \Lambda \to R \cup \{+\infty\}$ be functionals such that for $(x,\omega) \in H \times \Omega$ and $(y,\lambda) \in H \times \Lambda$, $\partial \phi_1(\cdot,\omega)$ and $\partial \phi_2(\cdot,\lambda)$ denote the subdifferential of proper convex lower semicontinuous functions ϕ_1 and ϕ_2 , respectively. Let $M(\cdot,\omega) = \partial \phi_1(\cdot,\omega)$ and $N(\cdot,\lambda) = \partial \phi_2(\cdot,\lambda)$ for all

 $(\omega, \lambda) \in \Omega \times \Lambda$. Then problem (2.1) is equivalent to finding $(x^*, y^*) \in H \times H$ such that

$$\langle \rho(S(y^*, \omega) + T(y^*, \omega)) + x^* - y^*, x - x^* \rangle \ge \rho \phi_1(x^*, \omega) - \rho \phi_1(x, \omega),$$
(2.2)
$$\langle \gamma(U(x^*, \lambda) + V(x^*, \lambda)) + y^* - x^*, x - y^* \rangle \ge \gamma \phi_2(y^*, \lambda) - \gamma \phi_2(x, \lambda)$$

for all $x \in H$, which is called the system of parametric generalized nonlinear mixed variational inequalities in Hilbert spaces [1].

Case II. Let K be a nonempty closed convex subset of H and $\phi_i = I_K$ (i = 1, 2) are the indicator functions of K. Then problem (2.2) reduces to the problem of finding $(x^*, y^*) \in K \times K$ such that

$$\langle \rho(S(y^*, \omega) + T(y^*, \omega)) + x^* - y^*, x - x^* \rangle \ge 0,$$

 $\langle \gamma(U(x^*, \lambda) + V(x^*, \lambda)) + y^* - x^*, x - y^* \rangle \ge 0$

for all $x \in K$, which is called the system of parametric generalized nonlinear quasi-variational inequalities in Hilbert spaces [1].

Definition 2.1. Let $A: E \to E, \eta: E \times E \to E$ be two single-valued mappings. Then a multivalued mapping $M: E \to 2^E$ is said to be

(i) accretive if

$$\langle u - v, J_q(x - y) \rangle \ge 0, \quad \forall x, y \in E, u \in M(x), v \in M(y);$$

(ii) m-relaxed η -accretive if there exists a constant m>0 such that

$$\langle u-v, J_q(\eta(x,y))\rangle \ge -m\|x-y\|^q, \quad \forall x, y \in E, u \in M(x), v \in M(y);$$

(iii) (A, η) -accretive if M is m-relaxed η -accretive and $(A + \rho M)(E) = E$ for every $\rho > 0$.

Definition 2.2. A mapping $S: E \times \Omega \to E$ is said to be

(i) δ -strongly accretive with respect to the first argument, $\delta \in (0,1)$, if

$$\langle S(x,\omega) - S(y,\omega), J_q(x-y) \rangle \ge \delta ||x-y||^q, \quad \forall x, y \in E;$$

(ii) λ_S -Lipschitz continuous with respect to the first argument if there exists a constant $\lambda_S>0$ such that

$$||S(x,\omega) - S(y,\omega)|| \le \lambda_S ||x - y||, \quad \forall (x, y, \omega) \in E \times E \times \Omega.$$

Definition 2.3. A single-valued mapping $A: E \to E$ is said to be

(i) η -accretive if

$$\langle A(x) - A(y), J_q(\eta(x, y)) \rangle \ge 0, \quad \forall x, y \in E;$$

- (ii) strictly η -accretive if A is η -accretive and equality holds if and only if x=y.
 - (iii) γ -strongly η -accretive if there exists a constant $\gamma > 0$ such that

$$\langle A(x) - A(y), J_q(\eta(x,y)) \rangle \ge \gamma ||x - y||^q, \quad \forall x, y \in E.$$

If $A: E \to E$ is a strictly η -accretive mapping and $M: E \to 2^E$ is an (A, η) -accretive mapping, then for a constant $\rho > 0$, the resolvent operator associated with A and M is defined by

$$R_{M,\rho}^{A,\eta}(u) = (A + \rho M)^{-1}(u), \quad \forall u \in E.$$

It is well known that $R_{M,\rho}^{A,\eta}$ is a single-valued mapping [5].

Remark 2.1. Since M is an (A, η) -accretive mapping with respect to the first argument, for any fixed $\omega \in \Omega$, we define

$$R_{M(\cdot,\omega),\rho}^{A,\eta}(u) = (A + \rho M(\cdot,\omega))^{-1}(u), \quad \forall u \in D(M),$$

which is called the parametric resolvent operator associated with A and $M(\cdot, \omega)$.

Remark 2.2. Resolvent operators associated with (A, η) -accretive mappings include as special cases the corresponding resolvent operators associated with (H, η) -accretive operators [8], (H, η) -monotone operators [10], H-accretive operators [4], H-monotone operators [3], H-monotone operators [11], the classical H-accretive and maximal monotone operators [14].

Now we need some lemmas which will be used in the proofs for the main results in the next section.

Lemma 2.1 ([12]). Let E be a real uniformly smooth Banach space. Then E is q-uniformly smooth if and only if there exists a constant $c_q > 0$ such that for all $x, y \in E$

$$||x + y||^q \le ||x||^q + q\langle y, J_q(x)\rangle + c_q ||y||^q.$$

Lemma 2.2 ([5]). Let E be a q-uniformly smooth Banach space, $\eta: E \times E \to E$ be τ -Lipschitz continuous, $A: E \to E$ be r-strongly η -accretive mapping and $M: E \to 2^E$ be an (A, η) -accretive mapping. Then the resolvent operator $R_{M(\cdot,\omega),\rho}^{A,\eta}: E \to E$ is $\frac{\tau^{q-1}}{r-\rho m}$ -Lipschitz continuous, i.e.,

$$||R_{M(\cdot,\omega),\rho}^{A,\eta}(u) - R_{M(\cdot,\omega),\rho}^{A,\eta}(v)|| \le \frac{\tau^{q-1}}{r - \rho m} ||u - v||, \quad \forall u, v \in E,$$

where $\rho \in (0, \frac{r}{m})$ is a constant.

3. Sensitivity analysis of solution set

Throughout the rest of this paper, we always assume that E is a real q-uniformly smooth Banach space. First of all, we prove the following lemma.

Lemma 3.1. For all fixed $(\omega, \lambda) \in \Omega \times \Lambda$, $(\bar{x}(\omega, \lambda), \bar{y}(\omega, \lambda))$ is a solution of the system of parametric generalized nonlinear quasi-variational inclusions with (A, η) -accretive mapping in q-uniformly smooth Banach space (2.1) if and only if for some given $\rho, \gamma > 0$, the mapping $F : E \times \Omega \times \Lambda \to E$ defined by

$$F(x,\omega,y) = R_{M(\cdot,\omega),\rho}^{A,\eta}[R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x - \gamma(U+V)(x,\lambda)) - \rho(S+T)(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x - \gamma(U+V)(x,\lambda)),\omega)]$$
(3.1)

has a fixed point \bar{x} .

Proof. For each fixed $(\omega, \lambda) \in \Omega \times \Lambda$, let $(\bar{x}(\omega, \lambda), \bar{y}(\omega, \lambda))$ be a solution of problem (2.1). Then for given $\rho, \gamma > 0$,

$$0 \in A(\bar{x}) - \bar{y} + \rho(S(\bar{y}, \omega) + T(\bar{y}, \omega)) + \rho M(\bar{x}, \omega),$$

$$0 \in A(\bar{y}) - \bar{x} + \gamma(U(\bar{x}, \lambda) + V(\bar{x}, \lambda)) + \gamma N(\bar{y}, \lambda),$$

which implies that

$$\bar{y} - \rho(S+T)(\bar{y},\omega) \in [A + \rho M(\cdot,\omega)](\bar{x}),$$

$$\bar{x} - \gamma(U+V)(\bar{x},\lambda) \in [A + \gamma N(\cdot,\lambda)](\bar{y}).$$

Thus, we obtain

$$(A + \rho M(\cdot, \omega))^{-1} [\bar{y} - \rho(S + T)(\bar{y}, \omega)] = \bar{x},$$

$$(A + \gamma N(\cdot, \lambda))^{-1} [\bar{x} - \gamma(U + V)(\bar{x}, \lambda)] = \bar{y},$$

i.e.,

$$\begin{split} R_{M(\cdot,\omega),\rho}^{A,\eta}[\bar{y}-\rho(S+T)(\bar{y},\omega)] &= \bar{x}, \\ R_{N(\cdot,\lambda),\gamma}^{A,\eta}[\bar{x}-\gamma(U+V)(\bar{x},\lambda)] &= \bar{y}. \end{split}$$

Hence, we have

$$\begin{split} \bar{x} &= R_{M(\cdot,\omega),\rho}^{A,\eta}[R_{N(\cdot,\lambda),\gamma}^{A,\eta}(\bar{x} - \gamma(U+V)(\bar{x},\lambda)) \\ &- \rho(S+T)(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(\bar{x} - \gamma(U+V)(\bar{x},\lambda)),\omega)] \\ &= F(\bar{x},\omega,\lambda). \end{split}$$

This means that \bar{x} is a fixed point of $F(x, \omega, \lambda)$.

Now, for any fixed point $(\omega, \lambda) \in (\Omega \times \Lambda)$, let \bar{x} be a fixed point of $F(x, \omega, \lambda)$. By the definition of F,

$$\begin{split} \bar{x} &= F(\bar{x}, \omega, \lambda) \\ &= R_{M(\cdot, \omega), \rho}^{A, \eta} [R_{N(\cdot, \lambda), \gamma}^{A, \eta}(\bar{x} - \gamma(U + V)(\bar{x}, \lambda)) \\ &- \rho(S + T)(R_{N(\cdot, \lambda), \gamma}^{A, \eta}(\bar{x} - \gamma(U + V)(\bar{x}, \lambda)), \omega)]. \end{split}$$

Let

$$\bar{y} = R_{N(\cdot,\lambda),\gamma}^{A,\eta}(\bar{x} - \gamma(U+V)(\bar{x},\lambda)).$$

Then we have

$$\bar{x} = R_{M(\cdot,\omega),\rho}^{A,\eta}[\bar{y} - \rho(S+T)(\bar{y},w)].$$

By the definitions of $R_{M(\cdot,\omega),\rho}^{A,\eta}$ and $R_{N(\cdot,\lambda),\gamma}^{A,\eta}$, we get

$$\bar{x} = (A + \rho M(\cdot, \omega))^{-1} [\bar{y} - \rho (S + T)(\bar{y}, \omega)],$$

$$\bar{y} = (A + \gamma N(\cdot, \lambda))^{-1} [\bar{x} - \gamma (U + T)(\bar{x}, \lambda)],$$

which implies that

$$\bar{y} - \rho(S+T)(\bar{y},\omega) \in [A + \rho M(\cdot,\omega)](\bar{x}),$$

$$\bar{x} - \gamma(U+V)(\bar{x},\lambda) \in [A + \gamma N(\cdot,\lambda)](\bar{y}).$$

Hence

$$0 \in A(\bar{x}) - \bar{y} + \rho(S(\bar{y}, \omega) + T(\bar{y}, \omega)) + \rho M(\bar{x}, \omega),$$

$$0 \in A(\bar{y}) - \bar{x} + \gamma(U(\bar{x}, \lambda) + V(\bar{x}, \lambda)) + \gamma N(\bar{y}, \lambda).$$

This completes the proof.

Theorem 3.1. Let $A: E \to E$, $S, T: E \times \Omega \to E$, $U, V: E \times \Lambda \to E$ be five mappings and $M: E \times \Omega \to 2^E$, $N: E \times \Lambda \to 2^E$ be two set-valued mappings satisfying the following conditions:

- (i) A is r-strongly η -accertive mapping,
- (ii) S is λ_S -Lipschitz continuous with respect to the first argument,
- (iii) T is δ -strongly accretive and λ_T -Lipschitz continuous with respect to the first argument,
- (iv) U is λ_U -Lipschitz continuous with respect to the first argument,
- (v) V is α -strongly accretive and λ_V -Lipschitz continuous with respect to the first argument,
- (vi) M and N are (A, η) -accretive with respect to the first argument.

Suppose that there exist $\rho > 0$ and $\gamma > 0$ such that

$$1 - \alpha q \gamma + c_q \gamma^q \lambda_V^q < (\frac{\gamma - \rho m}{\tau^{q-1}} - \gamma \lambda_U)^q,$$

$$(3.2) 1 - q\rho\delta + c_q\rho^q\lambda_T^q < (\frac{\gamma - \lambda m}{\tau^{q-1}} - \rho\lambda_S)^q.$$

Then

- (1) the mapping $F: E \times \Omega \times \Lambda \to E$ defined by (3.1) is a uniform θ -contractive mapping with respect to $(\omega, \lambda) \in \Omega \times \Lambda$.
- (2) for each $(\omega, \lambda) \in \Omega \times \Lambda$, the system of parametric generalized non-linear mixed quasi-variational inclusions with (A, η) -accretive mappings in quasi-variational spaces (2.1) has a nonempty solution set $S(\omega, \lambda)$ and $S(\omega\lambda)$ is a closed subset of E.

Proof. (1) By the definition of F, for any $x, y \in E$, we have (3.3)

$$\begin{split} &\|F(x,\omega,\lambda) - F(y,\omega,\lambda)\| \\ &= \|R_{M(\cdot,\omega),\rho}^{A,\eta}[R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x - \gamma(U+V)(x,\lambda)) \\ &\quad - \rho(S+T)(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x - \gamma(U+V)(x,\lambda)),\omega)] \\ &\quad - R_{M(\cdot,\omega),\rho}^{A,\eta}[R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y - \gamma(U+V)(y,\lambda)) \end{split}$$

$$\begin{split} &-\rho(S+T)(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega)]\|\\ \leq &\frac{\tau^{q-1}}{r-\rho m}\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda))\\ &-\rho(S+T)(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega)\\ &-(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda))\\ &-\rho(S+T)(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega))\|\\ \leq &\frac{\tau^{q-1}}{r-\rho m}\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda))-R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda))\\ &-\rho[T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega)\\ &-T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega)]\|\\ &+\frac{\tau^{q-1}}{r-\rho m}\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega)\\ &-S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega)\|. \end{split}$$

From Lemma 2.1, the δ -strong accretivity and λ_T -Lipschitz continuity of T it follows that

$$(3.4)$$

$$\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)) - R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda))$$

$$-\rho\{T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega)$$

$$-T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega)\}\|^{q}$$

$$\leq \|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)) - R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda))\|^{q}$$

$$-q\rho\langle T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega)$$

$$-T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega), J_{q}(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda))$$

$$-R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)))\rangle$$

$$+c_{q}\rho^{q}\|T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega)$$

$$-T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega)\|^{q}$$

$$\leq (1-q\rho\delta+c_{q}\rho^{q}\lambda_{T}^{q})\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda))$$

$$-R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda))\|^{q}$$

$$\leq (1-q\rho\delta+c_{q}\rho^{q}\lambda_{T}^{q})(\frac{\tau^{q-1}}{r-\lambda m})^{q}(\|x-y-\gamma(V(x,\lambda)-V(y,\lambda))\|$$

$$+\gamma\|U(x,\lambda)-U(y,\lambda)\|)^{q}.$$

Since V is α -strongly accretive and λ_V -Lipschitz continuous with respect to the first argument,

$$(3.5) ||x - y - \gamma(V(x, \lambda) - V(y, \lambda))||^q$$

$$\leq ||x - y||^q - q\gamma\langle V(x, \lambda) - V(y, \lambda), J_q(x - y)\rangle$$

$$+ c_q \gamma^q ||V(x, \lambda) - V(y, \lambda)||^q$$

$$\leq (1 - \alpha q\gamma + c_q \gamma^q \lambda_V^q) ||x - y||^q.$$

By the λ_U -Lipschitz continuity of U, we have

$$(3.6) ||U(x,\lambda) - U(y,\lambda)|| \le \lambda_U ||x - y||.$$

By the λ_S -Lipschitz continuity of S, (3.5) and (3.6), we obtain

(3.7)

$$||S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega) - S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega)||$$

$$\leq \lambda_S ||R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x-\gamma(U+V)(x,\lambda)),\omega) - R_{N(\cdot,\lambda),\gamma}^{A,\eta}(y-\gamma(U+V)(y,\lambda)),\omega)||$$

$$\leq \lambda_S \frac{\tau^{q-1}}{r-\lambda m} (||x-y-\gamma(V(x,\lambda)-V(y,\lambda))|| + \gamma ||U(x,\lambda)-U(y,\lambda)||)$$

$$\leq \frac{\lambda_S \tau^{q-1}}{r-\lambda m} [(1-\alpha q \gamma + c_q \gamma^q \lambda_V^q)^{\frac{1}{q}} + \gamma \lambda_U] ||x-y||.$$

By (3.3)-(3.7), we have

$$||F(x,\omega,\lambda) - F(y,\omega,\lambda)||$$

$$\leq \left(\frac{\tau^{q-1}}{r - \rho m}\right) \left(\frac{\tau^{q-1}}{r - \lambda m}\right) \left[\left(1 - \alpha q \gamma + c_q \gamma^q \lambda_V^q\right)^{\frac{1}{q}} + \gamma \lambda_U\right]$$

$$\left[\left(1 - q \rho \delta + c_q \rho^q \lambda_T^q\right)^{\frac{1}{q}} + \rho \lambda_S\right] ||x - y||$$

$$= \left(\frac{\tau^{q-1}}{r - \rho m}\right) \left(\frac{\tau^{q-1}}{r - \lambda m}\right) \theta_1 \theta_2 ||x - y||$$

$$= \theta ||x - y||,$$
(3.8)

where $\theta_1 = (1 - \alpha q \gamma + c_q \gamma^q \lambda_V^q)^{\frac{1}{q}} + \gamma \lambda_U$, $\theta_2 = (1 - q \rho \delta + c_q \rho^q \lambda_T^q)^{\frac{1}{q}} + \rho \lambda_S$ and $\theta = (\frac{\tau^{q-1}}{r - \rho m})(\frac{\tau^{q-1}}{r - \lambda m})\theta_1\theta_2$. It follows from condition (3.2) that $\theta < 1$. Thus, (3.8) implies that F is a contractive mapping which is uniform with respect to $(\omega, \lambda) \in \Omega \times \Lambda$.

(2) Since $F(x,\omega,\lambda)$ is a uniform θ -contractive mapping with respect to $(\omega,\lambda) \in \Omega \times \Lambda$, by the Banach fixed point theorem, $F(x,\omega,\lambda)$ has a fixed point $\bar{x}(\omega,\lambda)$ for each $(\omega,\lambda) \in \Omega \times \Lambda$. By Lemma 3.1, $S(\omega,\lambda) \neq \phi$. For each $(\omega,\lambda) \in \Omega \times \Lambda$, let $(x_n,y_n) \in S(\omega,\lambda)$ and $x_n \to x_0, y_n \to y_0$ as $n \to \infty$. Then we have

$$x_n \in F(x_n, \omega, \lambda), \quad n = 1, 2, \dots$$

By (1), we have

$$||F(x_n, \omega, \lambda) - F(x, \omega, \lambda)|| \le \theta ||x_n - x||.$$

It follows that

$$||x_0 - F(x_0, \omega, \lambda)|| \le ||x_0 - x_n|| + ||x_n - F(x_n, \omega, \lambda)||$$
$$+ ||F(x_n, \omega, \lambda) - F(x_0, \omega, \lambda)||$$
$$\le (1 + \theta)||x_n - x_0||$$
$$\to 0 \quad \text{as} \quad n \to \infty.$$

Hence we have $x_0 \in F(x_0, \omega, \lambda)$. From Lemma 3.1 we have $(x_0, y_0) \in S(\omega, \lambda)$. Therefore $S(\omega, \lambda)$ is a nonempty closed subset of E.

Theorem 3.2. Under the hypotheses of Theorem 3.1, further assume that for any $x, y \in E$, the mappings $\omega \mapsto S(x, \omega)$, $\omega \mapsto T(x, \omega)$, $\lambda \mapsto U(y, \lambda)$ and $\lambda \mapsto V(y, \lambda)$ are Lipschitz continuous with constants l_S, l_T, l_U, l_V , respectively. Suppose that for any $(t, \omega.\bar{\omega}) \in E \times \Omega \times \Omega$ and $(z, \lambda, \bar{\lambda}) \in E \times \Lambda \times \Lambda$,

$$\|R_{M(\cdot,\omega),\rho}^{A,\eta}(t)-R_{M(\cdot,\bar{\omega}),\rho}^{A,\eta}(t)\|\leq \mu\|\omega-\bar{\omega}\|,$$

(3.9)
$$||R_{N(\cdot,\lambda),\gamma}^{A,\eta}(z) - R_{M(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(z)|| \le \tau ||\lambda - \bar{\lambda}||,$$

where $\mu > 0$ and $\tau > 0$ are two constants.

Then the solution $(x(\omega, \lambda), y(\omega, \lambda))$ for the system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, η) -accretive mappings in q-uniformly smooth Banach spaces (2.1) is Lipschitz continuous.

Proof. For each (ω, λ) , $(\bar{\omega}, \bar{\lambda}) \in \Omega \times \Lambda$, by Theorem 3.1, $S(\omega, \lambda)$ and $(S(\bar{\omega}, \bar{\lambda}))$ are both nonempty closed subsets. Also, $F(x, \omega, \lambda)$ and $F(x, \bar{\omega}, \bar{\lambda})$ are contractive mappings with same constant $\theta \in (0, 1)$ and have fixed points $x(\omega, \lambda)$ and $x(\bar{\omega}, \bar{\lambda})$, respectively. For any fixed (ω, λ) , $(\bar{\omega}, \bar{\lambda}) \in \Omega \times \Lambda$, we have

$$\begin{split} & \|x(\omega,\lambda) - x(\bar{\omega},\bar{\lambda})\| \\ &= \|F(x(\omega,\lambda),\omega,\lambda) - F(x(\bar{\omega},\bar{\lambda}),\bar{\omega},\bar{\lambda})\| \\ &\leq \|F(x(\omega,\lambda),\omega,\lambda) - F(x(\bar{\omega},\bar{\lambda}),\omega,\lambda)\| \\ &\quad + \|F(x(\bar{\omega},\bar{\lambda}),\omega,\lambda) - F(x(\bar{\omega},\bar{\lambda}),\bar{\omega},\bar{\lambda})\| \\ &\leq \theta \|x(\omega,\lambda) - x(\bar{\omega},\bar{\lambda})\| + \|F(x(\bar{\omega},\bar{\lambda}),\omega,\lambda) - F(x(\bar{\omega},\bar{\lambda}),\bar{\omega},\bar{\lambda})\|, \end{split}$$

which implies that

$$(3.10) ||x(\omega,\lambda) - x(\bar{\omega},\bar{\lambda})|| \le \frac{1}{1-\theta} ||F(x(\bar{\omega},\bar{\lambda}),\omega,\lambda) - F(x(\bar{\omega},\bar{\lambda}),\bar{\omega},\bar{\lambda})||.$$

By condition (3.9), we have

$$(3.11) ||F(x(\bar{\omega}, \bar{\lambda}), \omega, \lambda) - F(x(\bar{\omega}, \bar{\lambda}), \bar{\omega}, \bar{\lambda})||$$

$$\leq ||R_{M(\cdot, \omega), \rho}^{A, \eta}[R_{N(\cdot, \lambda), \gamma}^{A, \eta}(x(\bar{\omega}, \bar{\lambda}) - \gamma(U + V)(x(\bar{\omega}, \bar{\lambda}), \lambda))$$

$$-\rho(S+T)(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)),\omega)]\\ -R_{M(\cdot,\omega),\rho}^{A,\eta}[R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})))\\ -\rho(S+T)(R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})]\|\\ +\|R_{M(\cdot,\omega),\rho}^{A,\eta}[R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})]\\ -\rho(S+T)(R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})]\\ -R_{M(\cdot,\bar{\omega}),\rho}^{A,\eta}[R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})]\\ -R_{M(\cdot,\bar{\omega}),\rho}^{A,\eta}[R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})]\|\\ \leq \frac{\tau^{q-1}}{r-\rho m}[\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}))\\ -\rho\{T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\}\|\\ +\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\}\|\\ +\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\}\|\\ +\mu\|\omega-\bar{\omega}\|\\ \leq \frac{\tau^{q-1}}{r-\rho m}[\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ -\rho\{T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ -R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ -R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ +\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ +\rho\|T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ -T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ +\rho\|T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ -T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ +\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\\ +\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\|\\ +\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\|\\ +\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\|\\ +\rho\|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\|$$

$$\begin{split} &-S(R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\|\\ &+\mu\|\omega-\bar{\omega}\|. \end{split}$$

The δ -strongly accretivity of T and the Lipschitz continuity of T, U and V imply

$$(3.12) \qquad \|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)) \\ - R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})) \\ - \rho\{T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)),\omega) \\ - T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\omega)\}\|^q \\ \leq \|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)) \\ - R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}))\|^q \\ - q\rho\langle T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)),\omega) \\ - T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\omega) \\ - T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})))\rangle \\ + c_q\rho^q \|T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})))\rangle \\ + c_q\rho^q \|T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(C+D)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\omega) \\ - T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(C+D)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\omega)\|^q \\ \leq (1 - q\rho\delta + c_q\rho^q\lambda_T^q)\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}))\|^q \\ \leq (1 - q\rho\delta + c_q\rho^q\lambda_T^q)\frac{\tau^{q(q-1)}\gamma^q}{(r-\lambda m)^q}(\|U(x(\bar{\omega},\bar{\lambda}),\lambda) - U(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}))\| \\ + \|V(x(\bar{\omega},\bar{\lambda}),\lambda) - V(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})\|)^q \\ \leq (1 - q\rho\delta + c_q\rho^q\lambda_T^q)\frac{\tau^{q(q-1)}\gamma^q}{(r-\lambda m)^q}(l_U + l_V)^q\|\lambda - \bar{\lambda}\|^q.$$

By condition (3.9), we have

By the l_T -Lipschitz continuity of T, we have

$$(3.14) ||T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}),\omega) - T(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})||$$

$$\leq l_T \|\omega - \bar{\omega}\|.$$

By using same argument, we can prove

$$(3.15) ||T(R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega}) - T(R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})|| < \lambda_T \tau ||\lambda - \bar{\lambda}||,$$

$$(3.16) \qquad \|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)),\omega) - S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\| \\ \leq \|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)),\omega) - S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)),\bar{\omega})\| \\ + \|S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\lambda)),\bar{\omega}) - S(R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})),\bar{\omega})\| \\ \leq l_S\|\omega-\bar{\omega}\| + \frac{\lambda_S\tau^{q-1}\gamma}{r-\lambda m}[\|U(x(\bar{\omega},\bar{\lambda}),\lambda)-U(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})\| \\ + \|V(x(\bar{\omega},\bar{\lambda}),\lambda)-V(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})\|] \\ \leq l_S\|\omega-\bar{\omega}\| + \frac{\lambda_S\tau^{q-1}\gamma}{r-\lambda m}(l_U+l_V)\|\lambda-\bar{\lambda}\|,$$

It follows from (3.10)-(3.17) that

$$\begin{split} &\|x(\omega,\lambda)-x(\bar{\omega},\bar{\lambda})\|\\ &\leq \frac{1}{1-\theta}[\frac{\tau^{q-1}}{r-\rho m}\{(1-q\rho\delta+c_q\rho^q\lambda_T^q)^{\frac{1}{q}}\frac{\tau^{q-1}\gamma}{r-\rho m}(l_U+l_V)\|\lambda-\bar{\lambda}\|\\ &+\tau\|\lambda-\bar{\lambda}\|+\rho l_T\|\omega-\bar{\omega}\|+\rho\lambda_T\tau\|\lambda-\bar{\lambda}\|+\rho l_S\|\omega-\bar{\omega}\|\\ &+\rho\lambda_S\frac{\tau^{q-1}\gamma}{r-\lambda m}(l_u+l_V)\|\lambda-\bar{\lambda}\|+\rho\lambda_S\tau\|\lambda-\bar{\lambda}\|\}+\mu\|\omega-\bar{\omega}\|]\\ &=\frac{1}{1-\theta}[\frac{\tau^{q-1}\rho}{r-\rho m}(l_S+l_T)+\mu]\|\omega-\bar{\omega}\|\\ &+(\frac{1}{1-\theta})(\frac{\tau^{q-1}}{r-\rho m})[\frac{\tau^{q-1}}{r-\rho m}(1-q\rho\delta+c_q\rho^q\lambda_T^q)^{\frac{1}{q}}\gamma(l_U+l_V)\\ &+\tau+\rho\lambda_T\tau+\frac{\tau^{q-1}}{r-\lambda m}\rho\lambda_S\gamma(l_U+l_V)+\rho\lambda_S\tau]\|\lambda-\bar{\lambda}\|, \end{split}$$

where θ is the constant of (3.8). This proves that $x(\omega, \lambda)$ is Lipschitz continuous in $(\omega, \lambda) \in \Omega \times \Lambda$.

On the other hand,

$$y(\omega,\lambda) = R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\omega,\lambda) - \gamma(U+V)(x(\omega,\lambda),\lambda)),$$

$$y(\bar{\omega},\bar{\lambda}) = R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda}) - \gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})).$$

Hence, we have

$$\begin{split} &\|y(\omega,\lambda)-y(\bar{\omega},\bar{\lambda})\|\\ &\leq \|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\omega,\lambda)-\gamma(U+V)(x(\omega,\lambda),\lambda))\\ &-R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}))\|\\ &+\|R_{N(\cdot,\lambda),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(U+V)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}))\|\\ &-R_{N(\cdot,\bar{\lambda}),\gamma}^{A,\eta}(x(\bar{\omega},\bar{\lambda})-\gamma(C+D)(x(\bar{\omega},\bar{\lambda}),\bar{\lambda}))\|\\ &\leq \frac{\tau^{q-1}}{r-\lambda m}[\|x(\omega,\lambda)-x(\bar{\omega},\bar{\lambda})-\gamma(V(x(\omega,\lambda),\lambda)-V(x(\bar{\omega},\bar{\lambda}),\lambda))\|\\ &+\gamma\|V(x(\bar{\omega},\bar{\lambda}),\lambda)-V(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})\|+\gamma\|U(x(\omega,\lambda),\lambda)-U(x(\bar{\omega},\bar{\lambda}),\lambda)\|\\ &+\gamma\|U(x(\bar{\omega},\bar{\lambda}),\lambda)-U(x(\bar{\omega},\bar{\lambda}),\bar{\lambda})\|]+\tau\|\lambda-\bar{\lambda}\|\\ &\leq \frac{\tau^{q-1}}{r-\lambda m}[(1-\alpha q\gamma+c_q\gamma^q\lambda_V^q)^{\frac{1}{q}}\|x(\omega,\lambda)-x(\bar{\omega},\bar{\lambda})\|+\gamma l_V\|\lambda-\bar{\lambda}\|\\ &+\gamma\lambda_U\|x(\omega,\lambda)-x(\bar{\omega},\bar{\lambda})\|+\gamma l_U\|\lambda-\bar{\lambda}\|]+\tau\|\lambda-\bar{\lambda}\|\\ &=\frac{\tau^{q-1}}{r-\lambda m}[(1-\alpha q\gamma+c_q\gamma^q\lambda_V^q)^{\frac{1}{q}}+\gamma\lambda_U]\|x(\omega,\lambda)-x(\bar{\omega},\bar{\lambda})\|\\ &+[\frac{\tau^{q-1}}{r-\lambda m}\gamma(l_U+l_V)+\tau]\|\lambda-\bar{\lambda}\|. \end{split}$$

It follows from the Lipschitz continuity of $x(\omega, \lambda)$ that $y(\omega, \lambda)$ is Lipschitz continuous. This completes the proof of Theorem 3.2.

References

- R. P. Agarwal, N. J. Huang, and M. Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions, Appl. Math. Lett. 17 (2004), 345–352.
- [2] S. Dafermos, Sensitivity analysis in variational inequalities, Math. Operat. Res. 13 (1988), 421–434.
- [3] Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), 795–803.
- [4] _____, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), 647–653.
- [5] H. Y. Lan, Y. J. Cho, and R. U. Verma, On nonlinear relaxed cocoercive variational inclusions involving (A, η) -accretive mappings in Banach spaces, Comput. Math. Appl. **51** (2006), 1529–1538.

- [6] R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), 299–304.
- [7] M. A. Noor, Generalized algorithm and sensitivity analysis for variational inequalities,
 J. Appl. Math. Stoch. Anal. 5 (1992), 29–42.
- [8] Y. H. Pan, Sensitivity analysis for general quasi-variational inequalities, J. Sichuan Normal Univ. 19 (1996), 56–59.
- [9] J. W. Peng, On a new system of generalized mixed quasi-variational-like inclusions with (H,η)-accretive operators in real q-uniformly smooth Banach spaces, Nonlinear Anal. 68 (2008), 981–993.
- [10] J. W. Peng and D. L. Zhu, Three-step iterative algorithm for a system of set-valued variational inclusions with (H,η) -monotone operators, Nonlinear Anal. **68** (2008), 139–153
- [11] R. U. Verma, A-monotonicity and applications to nonlinear variational inclusions, J. Appl. Math. Stoch. Anal. 17 (2004), no. 2, 193–195.
- [12] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127–1138.
- [13] N. D. Yen, Lipschitz continuity of solution of variational inequalities with a parametric polyhedral constraint, Math. Operat. Res. 20 (1995), 607–708.
- [14] D. Zeidler, Nonlinear Functional Analysis and its Applications II: Monotone Operators, Springer-Verlag, Berlin, 1985.

Jae Ug Jeong Department of Mathematics Dongeui University Pusan 614-714, Korea

 $E\text{-}mail\ address{:}\ \mathtt{jujeong@deu.ac.kr}$

Soo Hwan Kim Department of Mathematics Dongeui University Pusan 614-714, Korea

 $E\text{-}mail\ address: \verb|sootopology@hanmail.net|\\$