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SENSITIVITY ANALYSIS FOR A SYSTEM OF
GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL

INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS
IN BANACH SPACES

Jae Ug Jeong and Soo Hwan Kim

Abstract. In this paper, we study the behavior and sensitivity analysis
of the solution set for a new system of parametric generalized nonlinear
mixed quasi-variational inclusions with (A, η)-accretive mappings in q-
uniformly smooth Banach spaces. The present results improve and extend
many known results in the literature.

1. Introduction

Sensitivity analysis of solutions of variational inequalities with single-valued
mappings has been studied by many authors via quite different techniques.

By using the projection method, Dafermos [2], Yen [9], Mukherjee and Verma
[6], Noor [7], and Pan [8] studied the sensitivity analysis of solutions of some
variational inequalities with single-valued mappings in finite-dimensional spaces
or Hilbert spaces.

In 2004, using the concept and technique of resolvent operators, Agawal
et. al [1] introduced and studied the behavior and sensitivity analysis of the
solution set for a system of parametric variational inclusions in a Hilbert space
H, which is called the system of parametric generalized nonlinear mixed quasi-
variational inclusion problem:

For a given two nonempty open subsets Ω and Λ of H in which the param-
eters ω and λ take values, two maximal monotone mappings M : H ×Ω → 2H

and N : H×Λ → 2H , nonlinear single-valued mappings A,S : H×Ω → H and
B, T : H × Λ → H, find (x, y) ∈ H ×H such that

0 ∈ x− y + ρ(A(y, ω) + S(y, ω)) + ρM(x, ω),

0 ∈ y − x + γ(B(x, λ) + T (x, λ)) + γN(y, λ),

where ρ, λ > 0 are two constants.
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In this paper, we study the behavior and sensitivity analysis of the solution
set for a system of parametric generalized nonlinear mixed quasi-variational
inclusions with (A, η)-accretive mappings in q-uniformly smooth Banach spaces.
The present results improve and extend many known results in the literature.

2. Preliminaries

Let E be a real Banach space with dual space E∗, 〈·, ·〉 be the dual pair
between E and E∗ and 2E denote the family of all the nonempty subsets of E.
The generalized duality mapping Jq : E → 2E∗ is defined by

Jq(x) = {f ∈ E∗|〈x, f∗〉 = ‖x‖q and ‖f∗‖ = ‖x‖q−1},∀x ∈ E,

where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x 6= 0 and
Jq is single-valued if E∗ is strictly convex. If E = H is a Hilbert space, then
J2 becomes the identity mapping of H.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined
by

ρE(t) = sup{1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space E is called uniformly smooth if limt→0
ρE(t)

t = 0. E is called
q-uniformly smooth if there exists a constant c > 0 such that ρE(t) ≤ ctq,
q > 1. Note that Jq is single-valued if E is uniformly smooth.

We consider now a system of parametric generalized nonlinear mixed quasi-
variational inclusions with (A, η)-accretive mappings in q-uniformly smooth
Banach spaces. To this end, let Ω and Λ be two nonempty open subsets of E
in which the parameters ω and λ take values, S, T : E × Ω → E and U, V :
E × Λ → E be nonlinear single-valued mappings. Let M : E × Ω → 2E and
N : E×Λ → 2E be set-valued mappings such that for each given (ω, λ) ∈ Ω×Λ,
M(·, ω) and N(·, λ) : E → 2E are (A, η)-accretive mappings. For each fixed
(ω, λ) ∈ Ω × Λ, the system of parametric generalized nonlinear mixed quasi-
variational inclusions with (A, η)-accretive mappings in q-uniformly smooth
Banach spaces consist of finding (x, y) ∈ E × E such that

0 ∈ A(x)− y + ρ(S(y, ω) + T (y, ω)) + ρM(x, ω),

0 ∈ A(y)− x + γ(U(x, λ) + V (x, λ)) + γN(y, λ),(2.1)

where ρ > 0 and γ > 0 are two constants.
We now discuss some special cases.
Case I. Let E = H be a Hilbert space, A = I, the identity mappings, Ω and

Λ be two nonempty open subsets of H in which the parameters ω and λ takes
values. Let φ1 : H×Ω → R∪{+∞} and φ2 : H×Λ → R∪{+∞} be functionals
such that for (x, ω) ∈ H × Ω and (y, λ) ∈ H × Λ, ∂φ1(·, ω) and ∂φ2(·, λ)
denote the subdifferential of proper convex lower semicontinuous functions φ1

and φ2, respectively. Let M(·, ω) = ∂φ1(·, ω) and N(·, λ) = ∂φ2(·, λ) for all
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(ω, λ) ∈ Ω × Λ. Then problem (2.1) is equivalent to finding (x∗, y∗) ∈ H ×H
such that

〈ρ(S(y∗, ω) + T (y∗, ω)) + x∗ − y∗, x− x∗〉 ≥ ρφ1(x∗, ω)− ρφ1(x, ω),

〈γ(U(x∗, λ) + V (x∗, λ)) + y∗ − x∗, x− y∗〉 ≥ γφ2(y∗, λ)− γφ2(x, λ)(2.2)

for all x ∈ H, which is called the system of parametric generalized nonlinear
mixed variational inequalities in Hilbert spaces [1].

Case II. Let K be a nonempty closed convex subset of H and φi = IK

(i = 1, 2) are the indicator functions of K. Then problem (2.2) reduces to the
problem of finding (x∗, y∗) ∈ K ×K such that

〈ρ(S(y∗, ω) + T (y∗, ω)) + x∗ − y∗, x− x∗〉 ≥ 0,

〈γ(U(x∗, λ) + V (x∗, λ)) + y∗ − x∗, x− y∗〉 ≥ 0

for all x ∈ K, which is called the system of parametric generalized nonlinear
quasi-variational inequalities in Hilbert spaces [1].

Definition 2.1. Let A : E → E, η : E×E → E be two single-valued mappings.
Then a multivalued mapping M : E → 2E is said to be

(i) accretive if

〈u− v, Jq(x− y)〉 ≥ 0, ∀x, y ∈ E, u ∈ M(x), v ∈ M(y);

(ii) m-relaxed η-accretive if there exists a constant m > 0 such that

〈u− v, Jq(η(x, y))〉 ≥ −m‖x− y‖q, ∀x, y ∈ E, u ∈ M(x), v ∈ M(y);

(iii) (A, η)-accretive if M is m-relaxed η-accretive and (A+ρM)(E) = E for
every ρ > 0.

Definition 2.2. A mapping S : E × Ω → E is said to be
(i) δ-strongly accretive with respect to the first argument, δ ∈ (0, 1), if

〈S(x, ω)− S(y, ω), Jq(x− y)〉 ≥ δ‖x− y‖q, ∀x, y ∈ E;

(ii) λS-Lipschitz continuous with respect to the first argument if there exists
a constant λS > 0 such that

‖S(x, ω)− S(y, ω)‖ ≤ λS‖x− y‖, ∀(x, y, ω) ∈ E × E × Ω.

Definition 2.3. A single-valued mapping A : E → E is said to be
(i) η-accretive if

〈A(x)−A(y), Jq(η(x, y))〉 ≥ 0, ∀x, y ∈ E;

(ii) strictly η-accretive if A is η-accretive and equality holds if and only if
x = y.

(iii) γ-strongly η-accretive if there exists a constant γ > 0 such that

〈A(x)−A(y), Jq(η(x, y))〉 ≥ γ‖x− y‖q, ∀x, y ∈ E.
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If A : E → E is a strictly η-accretive mapping and M : E → 2E is an (A, η)-
accretive mapping, then for a constant ρ > 0, the resolvent operator associated
with A and M is defined by

RA,η
M,ρ(u) = (A + ρM)−1(u), ∀u ∈ E.

It is well known that RA,η
M,ρ is a single-valued mapping [5].

Remark 2.1. Since M is an (A, η)-accretive mapping with respect to the first
argument, for any fixed ω ∈ Ω, we define

RA,η
M(·,ω),ρ(u) = (A + ρM(·, ω))−1(u), ∀u ∈ D(M),

which is called the parametric resolvent operator associated with A and M(·, ω).

Remark 2.2. Resolvent operators associated with (A, η)-accretive mappings
include as special cases the corresponding resolvent operators associated with
(H, η)-accretive operators [8], (H, η)-monotone operators [10], H-accretive op-
erators [4], H-monotone operators [3], A-monotone operators [11], the classical
m-accretive and maximal monotone operators [14].

Now we need some lemmas which will be used in the proofs for the main
results in the next section.

Lemma 2.1 ([12]). Let E be a real uniformly smooth Banach space. Then E
is q-uniformly smooth if and only if there exists a constant cq > 0 such that for
all x, y ∈ E

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Lemma 2.2 ([5]). Let E be a q-uniformly smooth Banach space, η : E×E → E
be τ -Lipschitz continuous, A : E → E be r-strongly η-accretive mapping and
M : E → 2E be an (A, η)-accretive mapping. Then the resolvent operator
RA,η

M(·,ω),ρ : E → E is τq−1

r−ρm -Lipschitz continuous, i.e.,

‖RA,η
M(·,ω),ρ(u)−RA,η

M(·,ω),ρ(v)‖ ≤ τ q−1

r − ρm
‖u− v‖, ∀u, v ∈ E,

where ρ ∈ (0, r
m ) is a constant.

3. Sensitivity analysis of solution set

Throughout the rest of this paper, we always assume that E is a real q-
uniformly smooth Banach space. First of all, we prove the following lemma.

Lemma 3.1. For all fixed (ω, λ) ∈ Ω × Λ, (x̄(ω, λ), ȳ(ω, λ)) is a solution of
the system of parametric generalized nonlinear quasi-variational inclusions with
(A, η)-accretive mapping in q-uniformly smooth Banach space (2.1) if and only
if for some given ρ, γ > 0, the mapping F : E × Ω× Λ → E defined by
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F (x, ω, y) = RA,η
M(·,ω),ρ[R

A,η
N(·,λ),γ(x− γ(U + V )(x, λ))

− ρ(S + T )(RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)](3.1)

has a fixed point x̄.

Proof. For each fixed (ω, λ) ∈ Ω × Λ, let (x̄(ω, λ), ȳ(ω, λ)) be a solution of
problem (2.1). Then for given ρ, γ > 0,

0 ∈ A(x̄)− ȳ + ρ(S(ȳ, ω) + T (ȳ, ω)) + ρM(x̄, ω),

0 ∈ A(ȳ)− x̄ + γ(U(x̄, λ) + V (x̄, λ)) + γN(ȳ, λ),

which implies that

ȳ − ρ(S + T )(ȳ, ω) ∈ [A + ρM(·, ω)](x̄),

x̄− γ(U + V )(x̄, λ) ∈ [A + γN(·, λ)](ȳ).

Thus, we obtain

(A + ρM(·, ω))−1[ȳ − ρ(S + T )(ȳ, ω)] = x̄,

(A + γN(·, λ))−1[x̄− γ(U + V )(x̄, λ)] = ȳ,

i.e.,

RA,η
M(·,ω),ρ[ȳ − ρ(S + T )(ȳ, ω)] = x̄,

RA,η
N(·,λ),γ [x̄− γ(U + V )(x̄, λ)] = ȳ.

Hence, we have

x̄ = RA,η
M(·,ω),ρ[R

A,η
N(·,λ),γ(x̄− γ(U + V )(x̄, λ))

− ρ(S + T )(RA,η
N(·,λ),γ(x̄− γ(U + V )(x̄, λ)), ω)]

= F (x̄, ω, λ).

This means that x̄ is a fixed point of F (x, ω, λ).
Now, for any fixed point (ω, λ) ∈ (Ω×Λ), let x̄ be a fixed point of F (x, ω, λ).

By the definition of F ,

x̄ = F (x̄, ω, λ)

= RA,η
M(·,ω),ρ[R

A,η
N(·,λ),γ(x̄− γ(U + V )(x̄, λ))

− ρ(S + T )(RA,η
N(·,λ),γ(x̄− γ(U + V )(x̄, λ)), ω)].

Let

ȳ = RA,η
N(·,λ),γ(x̄− γ(U + V )(x̄, λ)).

Then we have

x̄ = RA,η
M(·,ω),ρ[ȳ − ρ(S + T )(ȳ, w)].

By the definitions of RA,η
M(·,ω),ρ and RA,η

N(·,λ),γ , we get

x̄ = (A + ρM(·, ω))−1[ȳ − ρ(S + T )(ȳ, ω)],
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ȳ = (A + γN(·, λ))−1[x̄− γ(U + T )(x̄, λ)],

which implies that

ȳ − ρ(S + T )(ȳ, ω) ∈ [A + ρM(·, ω)](x̄),

x̄− γ(U + V )(x̄, λ) ∈ [A + γN(·, λ)](ȳ).

Hence

0 ∈ A(x̄)− ȳ + ρ(S(ȳ, ω) + T (ȳ, ω)) + ρM(x̄, ω),

0 ∈ A(ȳ)− x̄ + γ(U(x̄, λ) + V (x̄, λ)) + γN(ȳ, λ).

This completes the proof. ¤
Theorem 3.1. Let A : E → E, S, T : E × Ω → E, U, V : E × Λ → E be five
mappings and M : E × Ω → 2E, N : E × Λ → 2E be two set-valued mappings
satisfying the following conditions:

(i) A is r-strongly η-accertive mapping,
(ii) S is λS-Lipschitz continuous with respect to the first argument,
(iii) T is δ-strongly accretive and λT -Lipschitz continuous with respect to

the first argument,
(iv) U is λU -Lipschitz continuous with respect to the first argument,
(v) V is α-strongly accretive and λV -Lipschitz continuous with respect to

the first argument,
(vi) M and N are (A, η)-accretive with respect to the first argument.

Suppose that there exist ρ > 0 and γ > 0 such that

1− αqγ + cqγ
qλq

V < (
γ − ρm

τ q−1
− γλU )q,

1− qρδ + cqρ
qλq

T < (
γ − λm

τ q−1
− ρλS)q.(3.2)

Then
(1) the mapping F : E×Ω×Λ → E defined by (3.1) is a uniform θ-contractive

mapping with respect to (ω, λ) ∈ Ω× Λ.
(2) for each (ω, λ) ∈ Ω × Λ, the system of parametric generalized non-

linear mixed quasi-variational inclusions with (A, η)-accretive mappings in q-
uniformly smooth Banach spaces (2.1) has a nonempty solution set S(ω, λ) and
S(ωλ) is a closed subset of E.

Proof. (1) By the definition of F , for any x, y ∈ E, we have

‖F (x, ω, λ)− F (y, ω, λ)‖
(3.3)

= ‖RA,η
M(·,ω),ρ[R

A,η
N(·,λ),γ(x− γ(U + V )(x, λ))

− ρ(S + T )(RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)]

−RA,η
M(·,ω),ρ[R

A,η
N(·,λ),γ(y − γ(U + V )(y, λ))
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− ρ(S + T )(RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)), ω)]‖

≤ τ q−1

r − ρm
‖RA,η

N(·,λ),γ(x− γ(U + V )(x, λ))

− ρ(S + T )(RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)

− (RA,η
N(·,λ),γ(y − γ(U + V )(y, λ))

− ρ(S + T )(RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)), ω))‖

≤ τ q−1

r − ρm
‖RA,η

N(·,λ),γ(x− γ(U + V )(x, λ))−RA,η
N(·,λ),γ(y − γ(U + V )(y, λ))

− ρ[T (RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)

− T (RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)), ω)]‖

+
τ q−1

r − ρm
ρ‖S(RA,η

N(·,λ),γ(x− γ(U + V )(x, λ)), ω)

− S(RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)), ω)‖.

From Lemma 2.1, the δ-strong accretivity and λT -Lipschitz continuity of T it
follows that

‖RA,η
N(·,λ),γ(x− γ(U + V )(x, λ))−RA,η

N(·,λ),γ(y − γ(U + V )(y, λ))

(3.4)

− ρ{T (RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)

− T (RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)), ω)}‖q

≤ ‖RA,η
N(·,λ),γ(x− γ(U + V )(x, λ))−RA,η

N(·,λ),γ(y − γ(U + V )(y, λ))‖q

− qρ〈T (RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)

− T (RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)), ω), Jq(R

A,η
N(·,λ),γ(x− γ(U + V )(x, λ))

−RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)))〉

+ cqρ
q‖T (RA,η

N(·,λ),γ(x− γ(U + V )(x, λ)), ω)

− T (RA,η
N(·,λ),γ(y − γ(U + V )(y, λ)), ω)‖q

≤ (1− qρδ + cqρ
qλq

T )‖RA,η
N(·,λ),γ(x− γ(U + V )(x, λ))

−RA,η
N(·,λ),γ(y − γ(U + V )(y, λ))‖q

≤ (1− qρδ + cqρ
qλq

T )(
τ q−1

r − λm
)q(‖x− y − γ(V (x, λ)− V (y, λ))‖

+ γ‖U(x, λ)− U(y, λ)‖)q.
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Since V is α-strongly accretive and λV -Lipschitz continuous with respect to
the first argument,

‖x− y − γ(V (x, λ)− V (y, λ))‖q(3.5)

≤ ‖x− y‖q − qγ〈V (x, λ)− V (y, λ), Jq(x− y)〉
+ cqγ

q‖V (x, λ)− V (y, λ)‖q

≤ (1− αqγ + cqγ
qλq

V )‖x− y‖q.

By the λU -Lipschitz continuity of U , we have

‖U(x, λ)− U(y, λ)‖ ≤ λU‖x− y‖.(3.6)

By the λS-Lipschitz continuity of S, (3.5) and (3.6), we obtain

‖S(RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)− S(RA,η

N(·,λ),γ(y − γ(U + V )(y, λ)), ω)‖
(3.7)

≤ λS‖RA,η
N(·,λ),γ(x− γ(U + V )(x, λ)), ω)−RA,η

N(·,λ),γ(y − γ(U + V )(y, λ)), ω)‖

≤ λS
τ q−1

r − λm
(‖x− y − γ(V (x, λ)− V (y, λ))‖+ γ‖U(x, λ)− U(y, λ)‖)

≤ λSτ q−1

r − λm
[(1− αqγ + cqγ

qλq
V )

1
q + γλU ]‖x− y‖.

By (3.3)-(3.7), we have

‖F (x, ω, λ)− F (y, ω, λ)‖

≤ (
τ q−1

r − ρm
)(

τ q−1

r − λm
)[(1− αqγ + cqγ

qλq
V )

1
q + γλU ]

[(1− qρδ + cqρ
qλq

T )
1
q + ρλS ]‖x− y‖

= (
τ q−1

r − ρm
)(

τ q−1

r − λm
)θ1θ2‖x− y‖

= θ‖x− y‖,(3.8)

where θ1 = (1− αqγ + cqγ
qλq

V )
1
q + γλU , θ2 = (1− qρδ + cqρ

qλq
T )

1
q + ρλS and

θ = ( τq−1

r−ρm )( τq−1

r−λm )θ1θ2. It follows from condition (3.2) that θ < 1. Thus,
(3.8) implies that F is a contractive mapping which is uniform with respect to
(ω, λ) ∈ Ω× Λ.

(2) Since F (x, ω, λ) is a uniform θ-contractive mapping with respect to
(ω, λ) ∈ Ω × Λ, by the Banach fixed point theorem, F (x, ω, λ) has a fixed
point x̄(ω, λ) for each (ω, λ) ∈ Ω × Λ. By Lemma 3.1, S(ω, λ) 6= φ. For each
(ω, λ) ∈ Ω× Λ, let (xn, yn) ∈ S(ω, λ) and xn → x0, yn → y0 as n →∞. Then
we have

xn ∈ F (xn, ω, λ), n = 1, 2, . . . .
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By (1), we have

‖F (xn, ω, λ)− F (x, ω, λ)‖ ≤ θ‖xn − x‖.
It follows that

‖x0 − F (x0, ω, λ)‖ ≤ ‖x0 − xn‖+ ‖xn − F (xn, ω, λ)‖
+ ‖F (xn, ω, λ)− F (x0, ω, λ)‖

≤ (1 + θ)‖xn − x0‖
→ 0 as n →∞.

Hence we have x0 ∈ F (x0, ω, λ). From Lemma 3.1 we have (x0, y0) ∈ S(ω, λ).
Therefore S(ω, λ) is a nonempty closed subset of E. ¤

Theorem 3.2. Under the hypotheses of Theorem 3.1, further assume that for
any x, y ∈ E, the mappings ω 7→ S(x, ω), ω 7→ T (x, ω), λ 7→ U(y, λ) and
λ 7→ V (y, λ) are Lipschitz continuous with constants lS , lT , lU , lV , respectively.
Suppose that for any (t, ω.ω̄) ∈ E × Ω× Ω and (z, λ, λ̄) ∈ E × Λ× Λ,

‖RA,η
M(·,ω),ρ(t)−RA,η

M(·,ω̄),ρ(t)‖ ≤ µ‖ω − ω̄‖,

‖RA,η
N(·,λ),γ(z)−RA,η

M(·,λ̄),γ
(z)‖ ≤ τ‖λ− λ̄‖,(3.9)

where µ > 0 and τ > 0 are two constants.
Then the solution (x(ω, λ), y(ω, λ)) for the system of parametric generalized

nonlinear mixed quasi-variational inclusions with (A, η)-accretive mappings in
q-uniformly smooth Banach spaces (2.1) is Lipschitz continuous.

Proof. For each (ω, λ), (ω̄, λ̄) ∈ Ω×Λ, by Theorem 3.1, S(ω, λ) and (S(ω̄, λ̄) are
both nonempty closed subsets. Also, F (x, ω, λ) and F (x, ω̄, λ̄) are contractive
mappings with same constant θ ∈ (0, 1) and have fixed points x(ω, λ) and
x(ω̄, λ̄), respectively. For any fixed (ω, λ), (ω̄, λ̄) ∈ Ω× Λ, we have

‖x(ω, λ)− x(ω̄, λ̄)‖
= ‖F (x(ω, λ), ω, λ)− F (x(ω̄, λ̄), ω̄, λ̄)‖
≤ ‖F (x(ω, λ), ω, λ)− F (x(ω̄, λ̄), ω, λ)‖

+ ‖F (x(ω̄, λ̄), ω, λ)− F (x(ω̄, λ̄), ω̄, λ̄)‖
≤ θ‖x(ω, λ)− x(ω̄, λ̄)‖+ ‖F (x(ω̄, λ̄), ω, λ)− F (x(ω̄, λ̄), ω̄, λ̄)‖,

which implies that

‖x(ω, λ)− x(ω̄, λ̄)‖ ≤ 1
1− θ

‖F (x(ω̄, λ̄), ω, λ)− F (x(ω̄, λ̄), ω̄, λ̄)‖.(3.10)

By condition (3.9), we have

‖F (x(ω̄, λ̄), ω, λ)− F (x(ω̄, λ̄), ω̄, λ̄)‖(3.11)

≤ ‖RA,η
M(·,ω),ρ[R

A,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ))
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− ρ(S + T )(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)]

−RA,η
M(·,ω),ρ[R

A,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))

− ρ(S + T )(RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)]‖

+ ‖RA,η
M(·,ω),ρ[R

A,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)),

− ρ(S + T )(RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)]

−RA,η
M(·,ω̄),ρ[R

A,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))

− ρ(S + T )(RA,η

N(·,λ̄),γ
(x(ω̄, γ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)]‖

≤ τ q−1

r − ρm
[‖RA,η

N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ))

−RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))

− ρ{T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)

− T (RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)}‖

+ ρ‖S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)

− S(RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖]

+ µ‖ω − ω̄‖

≤ τ q−1

r − ρm
[‖RA,η

N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ))

−RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))

− ρ{T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)

− T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω)}‖

+ ‖RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))

−R(N(·,λ̄),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))‖
+ ρ‖T (RA,η

N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω)‖
− T (RA,η

N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖
+ ρ‖T (RA,η

N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)

− T (RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖

+ ρ‖S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)

− S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖

+ ρ‖S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖
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− S(RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖

+ µ‖ω − ω̄‖.
The δ-strongly accretivity of T and the Lipschitz continuity of T , U and V
imply

‖RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ))(3.12)

−RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))

− ρ{T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)

− T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω)}‖q

≤ ‖RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ))

−RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))‖q

− qρ〈T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)

− T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω),

Jq(R
A,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ))

−RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)))〉

+ cqρ
q‖T (RA,η

N(·,λ),γ(x(ω̄, λ̄)− γ(C + D)(x(ω̄, λ̄), λ)), ω)

− T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(C + D)(x(ω̄, λ̄), λ̄)), ω)‖q

≤ (1− qρδ + cqρ
qλq

T )‖RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ))

−RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))‖q

≤ (1− qρδ + cqρ
qλq

T )
τ q(q−1)γq

(r − λm)q
(‖U(x(ω̄, λ̄), λ)− U(x(ω̄, λ̄)λ̄)‖

+ ‖V (x(ω̄, λ̄), λ)− V (x(ω̄, λ̄), λ̄)‖)q

≤ (1− qρδ + cqρ
qλq

T )
τ q(q−1)γq

(r − λm)q
(lU + lV )q‖λ− λ̄‖q.

By condition (3.9), we have

‖RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))(3.13)

−RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))‖

≤ τ‖λ− λ̄‖.
By the lT -Lipschitz continuity of T , we have

‖T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄), ω)(3.14)

− T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖
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≤ lT ‖ω − ω̄‖.
By using same argument, we can prove

‖T (RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)(3.15)

− T (RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖

≤ λT τ‖λ− λ̄‖,

‖S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)(3.16)

− S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖

≤ ‖S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω)

− S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω̄)‖

+ ‖S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ)), ω̄)

− S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖

≤ lS‖ω − ω̄‖+
λSτ q−1γ

r − λm
[‖U(x(ω̄, λ̄), λ)− U(x(ω̄, λ̄), λ̄)‖

+ ‖V (x(ω̄, λ̄), λ)− V (x(ω̄, λ̄), λ̄)‖]

≤ lS‖ω − ω̄‖+
λSτ q−1γ

r − λm
(lU + lV )‖λ− λ̄‖,

‖S(RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)(3.17)

− S(RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)), ω̄)‖

≤ λSτ‖λ− λ̄‖.
It follows from (3.10)-(3.17) that

‖x(ω, λ)− x(ω̄, λ̄)‖

≤ 1
1− θ

[
τ q−1

r − ρm
{(1− qρδ + cqρ

qλq
T )

1
q

τ q−1γ

r − ρm
(lU + lV )‖λ− λ̄‖

+ τ‖λ− λ̄‖+ ρlT ‖ω − ω̄‖+ ρλT τ‖λ− λ̄‖+ ρlS‖ω − ω̄‖

+ ρλS
τ q−1γ

r − λm
(lu + lV )‖λ− λ̄‖+ ρλSτ‖λ− λ̄‖}+ µ‖ω − ω̄‖]

=
1

1− θ
[

τ q−1ρ

r − ρm
(lS + lT ) + µ]‖ω − ω̄‖

+ (
1

1− θ
)(

τ q−1

r − ρm
)[

τ q−1

r − ρm
(1− qρδ + cqρ

qλq
T )

1
q γ(lU + lV )

+ τ + ρλT τ +
τ q−1

r − λm
ρλSγ(lU + lV ) + ρλSτ ]‖λ− λ̄‖,
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where θ is the constant of (3.8). This proves that x(ω, λ) is Lipschitz continuous
in (ω, λ) ∈ Ω× Λ.

On the other hand,

y(ω, λ) = RA,η
N(·,λ),γ(x(ω, λ)− γ(U + V )(x(ω, λ), λ)),

y(ω̄, λ̄) = RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄)).

Hence, we have

‖y(ω, λ)− y(ω̄, λ̄)‖
≤ ‖RA,η

N(·,λ),γ(x(ω, λ)− γ(U + V )(x(ω, λ), λ))

−RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))‖

+ ‖RA,η
N(·,λ),γ(x(ω̄, λ̄)− γ(U + V )(x(ω̄, λ̄), λ̄))

−RA,η

N(·,λ̄),γ
(x(ω̄, λ̄)− γ(C + D)(x(ω̄, λ̄), λ̄))‖

≤ τ q−1

r − λm
[‖x(ω, λ)− x(ω̄, λ̄)− γ(V (x(ω, λ), λ)− V (x(ω̄, λ̄), λ))‖

+ γ‖V (x(ω̄, λ̄), λ)− V (x(ω̄, λ̄), λ̄)‖+ γ‖U(x(ω, λ), λ)− U(x(ω̄, λ̄), λ)‖
+ γ‖U(x(ω̄, λ̄), λ)− U(x(ω̄, λ̄), λ̄)‖] + τ‖λ− λ̄‖

≤ τ q−1

r − λm
[(1− αqγ + cqγ

qλq
V )

1
q ‖x(ω, λ)− x(ω̄, λ̄)‖+ γlV ‖λ− λ̄‖

+ γλU‖x(ω, λ)− x(ω̄, λ̄)‖+ γlU‖λ− λ̄‖] + τ‖λ− λ̄‖

=
τ q−1

r − λm
[(1− αqγ + cqγ

qλq
V )

1
q + γλU ]‖x(ω, λ)− x(ω̄, λ̄)‖

+ [
τ q−1

r − λm
γ(lU + lV ) + τ ]‖λ− λ̄‖.

It follows from the Lipschitz continuity of x(ω, λ) that y(ω, λ) is Lipschitz
continuous. This completes the proof of Theorem 3.2. ¤
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