• Title/Summary/Keyword: slope change

Search Result 1,025, Processing Time 0.03 seconds

Evacuation Safety Evaluation According to Slope of the School Ramps

  • Choi, Chang-Jun;Kong, Ha-Sung
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.184-196
    • /
    • 2021
  • This study, in order to evaluate the safety of evacuation by comparing and analyzing the RSET according to the slope change of the ramp, which is a vertical evacuation route in case of fire in a high school building, Evacuation simulation was run the Pathfinder program changed the slope of the ramp to 10°, 15°, and 20° for each male students and female students. In the case of female students, it was analyzed that when the final RSET slope was 15°, 25.7 seconds were shorter than when 10°, and 4.2 seconds were shorter than when 20°. Male students also found that when the final RSET slope was 15°, 23.8 seconds were shorter than when 10°, and 5.4 seconds shorter than when 20°. It was analyzed that even if the number of participants was increased and the evacuation simulation was executed, the safety of evacuation could be improved when the slope of the slope is 15° as the RSET when the slope of the slope is 15° is shorter than that of 10° and 20°.

The Computation of Reinforcement Length of Afforestation Slope (사면녹화 보강토공법의 보강재길이 산정에 관한 연구)

  • Park, Sik-Choon;Nam, Kwang-On;Kim, Jong-Hwan;Lee, Soo-Yang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1302-1308
    • /
    • 2010
  • This study the change of the safety factor before and after the reinforcement were compared by performing the parameter research based on the limit equilibrium analysis regarding the same cross section after carrying out the safety factor before the reinforcement on the virtual section in order to observe the change of the safety factor of the slop reinforced with the slope planting reinforced earth, and the variation of the safety factor according to the increase of the length of the reinforcement materials and the change of the slope height was analyzed. As the result, the reinforcement effect was insignificant at no more than 0.6 of L/H, the reinforcement length ratio when the reinforcement length was increased, as the increase of the safety factor was slow comparing with the non-reinforced slope. At 3.0m of the slope height, reinforcement on the slope is not necessary, and at 3.0m to 5.0m of the slope height, the inclination was not influencing at no less than 0.6 of L/H. At 5.0m to 9.0m of the slope height, the safety factor was mostly secured on the slope at 0.8 of L/H and the over-reinforced slope appeared at no less than 1.0 of L/H. Also, the safety factor increased as the slope height increases and the slope gets steeper till 0.8 of L/H, but the slope steepness affects more on the increase of the safety factor than the reinforcement material, as the reinforcing force by the reinforcement material became steady.

  • PDF

A Study on the Variation of Ground Safety Factor by Earthworks

  • Kim, Jinhwan;Kwon, O-Il;Baek, Yong;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.333-341
    • /
    • 2014
  • The construction of roads, tunnels, and bridges results in changes to the local terrain that may influence the ground safety factor, which represents the stability of geotechnical structures. In this study, we assessed construction sites that had collapsed as a result of terrain change, and then simulated variation in the ground safety factor with respect to terrain change caused by road construction. We assumed steep slopes to simulate changes in terrain in a mountainous area and assumed that earthworks took place for road construction by cutting a platform into the slope and altering the slope angle of the terrain both above and below the road. We calculated values of the ground safety factor through a stability analysis of the slope both above and below the road, and examined the variation in the safety factor of the above- and below-road slopes with respect to changes in road width. We found that if the slope angle was the same above and below the road, then the change in the ground safety factor during/after road construction occurred in the slope below the road, and if the slope angle above the road differed from that below, then the change occurred in both the above- and below-road slopes. Furthermore, the ground safety factor was essentially constant for road widths exceeding 2-6 m, depending on both above- and below-road slope angle. The findings of this study can be used to guide the management of construction sites and to assess changes in ground stability during road construction work, particularly in the early stages of earthworks, when the road width is narrow.

Slope Detecting and Walking Algorithm of a Quadruped Robot Using Contact Forces (접촉 반력을 이용한 4 족 보행로봇의 경사면 감지 및 보행 알고리즘)

  • Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.138-147
    • /
    • 1999
  • For autonomous navigation, a legged robot should be able to walk over irregular terrain and adapt itself to variation of supporting surface. Walking through slope is one of the typical tasks for such case. Robot needs not only to change foot trajectory but also to adjust its configuration to the slope angle for maintaining stability against gravity. This paper suggests such adaptation algorithm for stable walking which uses feedback of reaction forces at feet. Adjusting algorithm of foot trajectory was studied with the estimated angel of slope without visual feedback. A concept of virtual slope angle was introduced to adjust body configuration against slope change of the supporting terrain. Regeneration of foot trajectory also used this concept for maintaining its stable walking against unexpected landing point.

  • PDF

Reset Waveform Generation Circuit Adapting To Temperature Change (온도 적응형 PDP RESET 파형 발생회로의 개발)

  • Shin Min-Ho;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.587-591
    • /
    • 2005
  • Driving Waveform of AC PDP in reset periode is increased and decreased with constant slope to improve dark room contrast ratio and image quality. But the slope and magnitude of ramp waveform are related to strong and weak discharge with temperature change in AC PDP. So this paper proposes a methods of changing the slope and magnitude of ramp waveform during reset periode according to temperature change in AC PDP. Experimental variable factors ire chosen to setup slope, setdown slope, and -Vy voltage magnitude in Y sustain electrode. The proposed methods are expected to compensate for effect of the temperature change, causing misfiring in high and low temprature, with varing the slope and magnitude of ramp voltage during reset period and improve image quality.

Investigation of the Frictional Behavior with respect to Surface Geometry and Surface Material at Nanoscale (나노스케일에서의 표면형상 및 재료변화에 대한 마찰거동 고찰)

  • 성인하;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.36-41
    • /
    • 2001
  • In this work, the changes in the friction force(lateral force) with respect to nanoscale geometric variation were investigated using an Atomic Force Microscope and a Lateral Force Microscope. It could be concluded that the changes in the friction force correspond well to the slope change rather than the surface slope itself, and that the influence of slope change on the frictional behavior is dependent on the magnitude of the slope and the torsional stiffness of the cantilever. Also, the nominal friction force is found to be more significantly affected by the material and the physical-chemical state of the surface rather than by nanoscale geometric steps. However, the change in nanoscale geometric details of the surface cause instantaneous change and slight variation in the friction signal.

  • PDF

A Study on the Wide Reach Nozzle of Sprayer(I) (휴반용 분무기의 Nozzle에 관한 연구(I))

  • 원장우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.2
    • /
    • pp.2980-3001
    • /
    • 1973
  • Nozzle is a part of sprayer and is consists of several elements; swirl plate, vortexchamber, cap and body. The travelling distance of sprayed particles is important in the wide reach nozzle. The factors to influence the travelling distance of the sprayed particles may be the helical angle of swirl plate, the distance of vortex hamber, the slope and the size of cap hole. The study was conducted to examine the effects of these factors on the travelling distance. The results of this study are summarized as follows; 1) There was higher positive correlation(+0.96) between the maximum travelling distance for which amount of sprayed particles was 5cc/cm min. and centro-position of the travelling distance. 2) There was a higher positive correlation(+0.85) between total discharge of sprayed particles and the centro-position of the travelling distance. 3) Main effects and interaction effects of helical angle, pressure, vortex chamber distance and cap slope were significantly affected the travelling distance of sprayed particles. 4) Main effects of helical angle, pressure and cap slope were especially highly significant to influence the travelling disance. 5) Helical angle, pressure, vortex chamber distance and cap slope influenced spraying forward velocity of dise hole, among which cap slope and pressure of nozzle was the most important factors. 6) Effect of change of helical angle on the travelling distance of sprayed particles, was generally a quadratic, the least value of the distance being showed about $45^{\circ}$ and the largest at about $15^{\circ}\;and\;55^{\circ}$, the decreasing rate of the change between $15^{\circ};and\;25^{\circ}$ was very small. 7) Effect of change of pressure on the travelling distance sprayed particles was generally a linear, the increasing rate of the charge was about 1.68, which was the most effective compared to the change of the other factors. 8) Effect of change of vortex chamber distance on the spraying distance was also generally a linear, the increasing rate being about 0.16, which was the least effective. 9) Effect of change of cap slope on the travelling distance was also generally a linear, the increasing rate was about 0.61 and its effect was about medium.

  • PDF

Analysis for the Safety Factor of Slope and Seepage according to Change Cross-Section in the Reservoir Embankments (저수지 제체 단면 형상 변화에 따른 안전율 및 침투유량 분석)

  • Noh, Soo-Kack;Son, Young-Hwan;Bong, Tae-Ho;Park, Jae-Sung;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.37-46
    • /
    • 2013
  • Many factors about the stability for the reservoir embankments is determined when the facility is completed. Therefore the initial design of the embankment is important. Many researchers focused the effect of soil parameters although the cross section greatly affects the stability and can be controlled in design step. The objective of this research is to analysis of the effects for the safety factor of slope and seepage according to change cross-section in embankment. As a result, the quantity of seepage decreased as the gradient of downstream slope decreased and was proportional to the height of embankments. There was a linear relationship between the gradient of slope and the safety factor of slope. However the gradient of slope did not affect other side slope. All in a relationship, regressive equations with a high correlation coefficient were calculated and can be applied the simple estimation method of the stability using the cross-section. As results of analyzing the sensitivity, the friction angle and permeability critically effect for the slope stability and the seepage, respectively. The effect of the slope gradient was similar to major soil properties.

A Study on the Flame Tilt and Flame Spread due to Up-slope on the Surface Fuel Bed - No wind condition - (경사에 따른 화염각 변화와 지표 화염 확산에 관한 연구 - 무풍조건 기반 -)

  • Kim, Dong-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.57-62
    • /
    • 2009
  • Flame spread velocity to virgin surface fuel bed on a ground slope increases as the flame gets closer to the slope according to the change of a ground slope angle. The existing studies have generally adopted the theory that flame gets closer to the slope as the slope angle increases, without considering the change of flame tilt against the slope. In this study, experiments were made on the actual characteristics of the flame on slopes of various angles, and as a result, this study offers the flame tilt equation according to the slope angle, and derive correlation between flame tilt and flame spread velocity on slope conditions.

Career Maturity of Elementary School Students : Trajectories and Predictors of Change (초등학생의 진로성숙도 발달궤적과 예측요인)

  • Lee, Ju-Rhee
    • Korean Journal of Child Studies
    • /
    • v.30 no.2
    • /
    • pp.43-55
    • /
    • 2009
  • This study investigated trajectories of change in the career maturity of elementary school students and of attachment to parents and academic achievement as predictors of change. The 2844 participants were 1524 boys and 1320 girls in the Korea Youth Panel Survey. They were fourth graders in 2004 and became seventh graders in 2007. Latent growth curve modeling indicated that : (1) Trajectories of change in career maturity from fourth grade to seventh grade modeled quadratic growth. (2) Variance of career maturity in initial levels, linear slope and quadratic slope indicated individual differences intrajectories of change in career maturity. (3) Attachment to parents influenced initial levels of career maturity academic achievement influenced both initial levels and linear slope of career maturity.

  • PDF