• Title/Summary/Keyword: simultaneous confidence intervals.

Search Result 16, Processing Time 0.019 seconds

Constructing Simultaneous Confidence Intervals for the Difference of Proportions from Multivariate Binomial Distributions

  • Jeong, Hyeong-Chul;Kim, Dae-Hak
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.129-140
    • /
    • 2009
  • In this paper, we consider simultaneous confidence intervals for the difference of proportions between two groups taken from multivariate binomial distributions in a nonparametric way. We briefly discuss the construction of simultaneous confidence intervals using the method of adjusting the p-values in multiple tests. The features of bootstrap simultaneous confidence intervals using non-pooled samples are presented. We also compute confidence intervals from the adjusted p-values of multiple tests in the Westfall (1985) style based on a pooled sample. The average coverage probabilities of the bootstrap simultaneous confidence intervals are compared with those of the Bonferroni simultaneous confidence intervals and the Sidak simultaneous confidence intervals. Finally, we give an example that shows how the proposed bootstrap simultaneous confidence intervals can be utilized through data analysis.

Balanced Simultaneous Confidence Intervals in Logistic Regression Models

  • Lee, Kee-Won
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.139-151
    • /
    • 1992
  • Simultaneous confidence intervals for the parameters in the logistic regression models with random regressors are considered. A method based on the bootstrap and its stochastic approximation will be developed. A key idea in using the bootstrap method to construct simultaneous confidence intervals is the concept of prepivoting which uses the transformation of a root by its estimated cumulative distribution function. Repeated use of prepivoting makes the overall coverage probability asymptotically correct and the coverage probabilities of the individual confidence statement asymptotically equal. This method is compared with ordinary asymptotic methods based on Scheffe's and Bonferroni's through Monte Carlo simulation.

  • PDF

ESTIMATING THE SIMULTANEOUS CONFIDENCE LEVELS FOR THE DIFFERENCE OF PROPORTIONS FROM MULTIVARIATE BINOMIAL DISTRIBUTIONS

  • Jeong, Hyeong-Chul;Jhun, Myoung-Shic;Lee, Jae-Won
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.397-410
    • /
    • 2007
  • For the two groups data from multivariate binomial distribution, we consider a bootstrap approach to inferring the simultaneous confidence level and its standard error of a collection of the dependent confidence intervals for the difference of proportions with an experimentwise error rate at the a level are presented. The bootstrap method is used to estimate the simultaneous confidence probability for the difference of proportions.

Multiple Comparisons With the Best in the Analysis of Covariance

  • Lee, Young-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.53-62
    • /
    • 1994
  • When a comparison is made with respect to the unknown best treatment, Hsu (1984, 1985) proposed the so called multiple comparisons procedures with the best in the analysis of variance model. Applying Hsu's results to the analysis of covariance model, simultaneous confidence intervals for multiple comparisons with the best in a balanced one-way layout with a random covariate are developed and are applied to a real data example.

  • PDF

A Parametric Empirical Bayesian Method for Multiple Comparisons

  • Kim, Woo-Chul;Hwang, Hyung-Tae
    • Journal of the Korean Statistical Society
    • /
    • v.20 no.1
    • /
    • pp.44-56
    • /
    • 1991
  • For all pairwise comparisons of treatments, Bayesian simultaneous confidence intervals are proposed and studied. First Bayesian solutions are obtained for a fixed prior, and then prior parameters are estimated by a parametric empirical Bayesian method. The nominal confidence level is shown to be controlled asymptotically. An extension to the unbalanced design is also considered.

  • PDF

A SELECTION PROCEDURE FOR GOOD LOGISTICS POPULATIONS

  • Singh, Parminder;Gill, A.N.
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.3
    • /
    • pp.299-309
    • /
    • 2003
  • Let ${\pi}_1,...,{\pi}_{k}$k($\geq$2) independent logistic populations such that the cumulative distribution function (cdf) of an observation from the population ${\pi}_{i}$ is $$F_{i}\;=\; {\frac{1}{1+exp{-\pi(x-{\mu}_{i})/(\sigma\sqrt{3})}}},\;$\mid$x$\mid$<\;{\infty}$$ where ${\mu}_{i}(-{\infty}\; < \; {\mu}_{i}\; <\; {\infty}$ is unknown location mean and ${\delta}^2$ is known variance, i = 1,..., $textsc{k}$. Let ${\mu}_{[k]}$ be the largest of all ${\mu}$'s and the population ${\pi}_{i}$ is defined to be 'good' if ${\mu}_{i}\;{\geq}\;{\mu}_{[k]}\;-\;{\delta}_1$, where ${\delta}_1\;>\;0$, i = 1,...,$textsc{k}$. A selection procedure based on sample median is proposed to select a subset of $textsc{k}$ logistic populations which includes all the good populations with probability at least $P^{*}$(a preassigned value). Simultaneous confidence intervals for the differences of location parameters, which can be derived with the help of proposed procedures, are discussed. If a population with location parameter ${\mu}_{i}\;<\;{\mu}_{[k]}\;-\;{\delta}_2({\delta}_2\;>{\delta}_1)$, i = 1,...,$textsc{k}$ is considered 'bad', a selection procedure is proposed so that the probability of either selecting a bad population or omitting a good population is at most 1­ $P^{*}$.

Balanced Accuracy and Confidence Probability of Interval Estimates

  • Liu, Yi-Hsin;Stan Lipovetsky;Betty L. Hickman
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2002
  • Simultaneous estimation of accuracy and probability corresponding to a prediction interval is considered in this study. Traditional application of confidence interval forecasting consists in evaluation of interval limits for a given significance level. The wider is this interval, the higher is probability and the lower is the forecast precision. In this paper a measure of stochastic forecast accuracy is introduced, and a procedure for balanced estimation of both the predicting accuracy and confidence probability is elaborated. Solution can be obtained in an optimizing approach. Suggested method is applied to constructing confidence intervals for parameters estimated by normal and t distributions

  • PDF

Statistical Analysis of Simulation Output Ratios (시뮬레이션 출력비 추정량의 통계적 분석)

  • 홍윤기
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 1994
  • A statistical procedure is developed to estimate the relative difference between two parameters each obtained from either true model or approximate model. Double sample procedure is applied to find the additional number of simulation runs satisfying the preassigned absolute precision of the confidence interval. Two types of parameters, mean and standard deviation, are considered as the performance measures and tried to show the validity of the model by examining both queues and inventory systems. In each system it is assumed that there are three distinct means and their own standard deviations and they form the simultaneous confidence intervals but with control in the sense that the absolute precision for each confidence interval is bounded on the limits with preassigned confidence level. The results of this study may contribute to some situations, for instance, first, we need a statistical method to compare the effectiveness between two alternatives, second, we find the adquate number of replications with any level of absolute precision to avoid the unrealistic cost of running simulation models, third, we are interested in analyzing the standard deviation of the output measure, ..., etc.

  • PDF

Exact simulataneous confidence interval for the case of four means using TK procedure (Tukey-Kramer방법을 이용한 4개 평균에 관한 정확한 동시 신뢰구간의 통계적 계산 방법)

  • 김병천;김화선;조신섭
    • The Korean Journal of Applied Statistics
    • /
    • v.2 no.1
    • /
    • pp.18-34
    • /
    • 1989
  • The problem of simultaneously estimating the pairwise differences of means of four independent normal populations with equal variances is considered. A statistical computing procedure involving a trivariate t density constructs the exact confidence intervals with simultaneous co verage probability equal to $1-\alpha$. For equal sample sizes, the new procedure is the same as the Tukey studentized range procedure. With unequal sample sizes, in the sense of efficiency for confidence interval lengths and experimentwise error rates, the procedure is superior to the various generalized Tukey procedures.

On Testing Fisher's Linear Discriminant Function When Covariance Matrices Are Unequal

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.325-337
    • /
    • 1993
  • This paper propose two test statistics which enable us to proceed the variable selection in Fisher's linear discriminant function for the case of heterogeneous discrimination with equal training sample size. Simultaneous confidence intervals associated with the test are also given. These are exact and approximate results. The latter is based upon an approximation of a linear sum of Wishart distributions with unequal scale matrices. Using simulated sampling experiments, powers of the two tests have been tabulated, and power comparisons have been made between them.

  • PDF