The Korean Journal of Applied Statistics (2009}
22(1), 129-140

Constructing Simultaneous Confidence Intervals
for the Difference of Proportions from
Multivariate Binomial Distributions

Hyeong Chul Jeong! - Daehak Kim?

Dept. of Applied Statistics, University of Suwon;
2School of Computer & Information Communications, Catholic University of Daegu

{Received October 2008; accepted November 2008)

Abstract

In this paper, we consider simultaneous confidence intervals for the difference of proportions between two
groups taken from multivariate binomial distributions in a nonparametric way. We briefly discuss the con-
struction of simultaneous confidence intervals using the method of adjusting the p-values in multiple tests.
The features of bootstrap simultaneous confidence intervals using non-pooled samples are presented. We also
compute confidence intervals from the adjusted p-values of multiple tests in the Westfall (1985) style based
on a pooled sample. The average coverage probabilities of the bootstrap simultaneous confidence intervals
are compared with those of the Bonferroni simultaneous confidence intervals and the Sidék simultaneous
confidence intervals. Finally, we give an example that shows how the proposed bootstrap simultaneous

confidence intervals can be utilized through data analysis.

Keywords: Multivariate binomial distribution, simultaneous confidence intervals, bootstrap, multiple
test, pooled sample.

1. Introduction

Binary data is very common in social science or clinical settings; examples include success or
failure, survival or death, and occurrence or non-occurrence of cancer. An observed value follows
a multivariate binomial distribution if it contains multiple categories and each of the categories
involves a binary decision. As an example, given two groups and k tissues that exhibit a binary
response to a certain treatment, we are interested in the difference in the proportions of the two
groups’ tissues that respond to that treatment. We may want to determine whether the cancer rates
in tissues or organs differ when drug A is injected in two different species of animals or whether
they differ between different tissues if two different treatments, A and B, are injected in the same
species. We have to consider that many tissues intermingle with one another and form relationships.
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In other words, the occurrence of cancer in one tissue is likely to increase the chances of cancer
elsewhere. Therefore, we must observe the difference in the cancer ratios as a whole instead of
looking at the cancer ratios of each tissue separately. Thus, a researcher must use simultaneous
reasoning through multiple comparisons if one is interested in the familywise error rate of the entire
set rather than the experimentwise error rate.

When thinking about error control in simultaneous confidence intervals, we inevitably have to
consider both familywise and eachwise errors. Jeong et al. (2007) discuss how to estimate the
familywise error rate when the eachwise error rate of each variable is given for two multivariate
binomial distributions. In this study, as opposed to the approach in Jeong et al.(2007), we construct
the confidence intervals of a marginal variable by maintaining its given familywise error rate for the
difference of proportions between two multivariate binomial distributions.

Defining the simultaneous confidence intervals for the difference of proportions d; = p1; — p2; (j =
1,..., k) between two groups with k variables is equivalent to adjusting the p-values computed in
multiple testing H, : p1; = pa; (F = 1,...,k}. Westfall and Young (1989, 1993) dealt with methods
to adjust the p-values for the difference of proportions. Westfall and Young (1989) emphasized the
advantages of nonparametric methods by comparing the properties of bootstrap and permutation
p-value adjustments with those of Bonferroni and Siddk p-value adjustments. Further, they rec-
ommended using pooled samples when calculating test statistics because tests depend on the null
hypothesis. However, in this paper, we do not intend to discuss p-value adjustments but rather define
the simultaneous confidence intervals using the bootstrap method. The definition of a confidence
interval does not depend on the given null hypothesis. Therefore, the samples used to calculate
the standard deviation of d; for a confidence interval are different from those used to calculate the
standard deviation of d; for the hypothesis test. The simultaneous confidence interval that uses a
non-pooled sample is much more advantageous than the simultaneous confidence interval that uses
a pooled sample. In addition, through simulation study we know that the bootstrap simultaneous
confidence intervals are much more advantageous than the Bonferroni or Siddk intervals in terms
of average coverage probabilities (Woodroofe and Jhun, 1988).

In fact, in the case of binary, Poisson, or other discrete data, the bootstrap method has no advan-
tage over the normal approximation because of the discreteness (Singh, 1981). However, because
Woodroofe and Jhun (1988) proved that bootstraps have enough advantages in terms of average
coverage probability for discrete data on average, we intend to evaluate the average execution ca-
pability of bootstraps in computing & simultaneous confidence interval.

Jhun et al. (2007) defined a simultaneous confidence interval for a multivariate Poisson distribution.
Jhun et al. (2007) proposed an asymmetric simultaneous confidence interval that considered the
skewness of a Poisson distribution. However, similar to the results from Jhun et al. {2007), this study
- will show that the bootstrap simultaneous confidence interval is well applied even for a difference
in group ratios. We will also address the possibility that the method of defining the confidence
interval may vary depending on the distribution.

Section 2 introduces bootstrap simultaneous confidence intervals for differences of proportions be-
tween two groups. In particular, we perform simulations to compare pooled and non-pooled samples
and determine average coverage probabilities, which is possibly a more relevant description of con-
fidence interval performance. Section 3 compares simultaneous confidence intervals with p-value
adjustments using data analyses. Section 4 concludes the paper.
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2. Simultaneous Confidence Intervals
2.1. Motivation

Assume that the observable data vectors Y’ = (Y1,...,Y:) with binomial marginal distributions
Y; ~ B(n,p;) may be modeled as having multivariate binomial distributions. Define the notation

Y ~ MVB,(P,n, D),

where P = (p1,....ps) denotes the population proportions vector for a k-component and the
dependence structure is specified by D.

When n = 1, the distribution MVB.(P, 1, D) is a multivariate Bernoulli distribution. If there are
two treatment groups with 71, ny experimental units, respectively, the available data vectors are
Xi1,-. -, Xiny, Xo1,. .., Xon,, where Xl = (X1, Xija, .-+, Xiju), ( = 1,2) has an independent
and identically distribution(iid) as MVBx (P, 1, D;) and X;;; is the response falling in I** variable
of the j** observation for the i* group. Let the i'" group proportion vector P; = (p;1, piz, - . - , Dik)-
Then E(X;;) = P;. Let the i'" group frequency vector Y; = (Yi1, Yiz, ..., Yix). Then Y; = 21X
is distributed as MVB(P;,n:, D;). The maximum likelihood estimator of the probability Dij 18
Di; = Yij/ni (Jeong et al., 2007).

Let us assume that we are sampling from two different multivariate binomial distributions, where Y1
is from MVB(P1,n,D1) and Yz is from MVB(Ps,n, Dz). We are interested in constructing a si-
multaneous confidence region for d; = py;—p2;, j = 1,..., k. The two sample Z; = {d; —d;}/sd(d;)
statistics are used to construct the marginal confidence intervals, so that the marginal confidence
intervals are d; +2(a/2)sd(dy), j = 1 , k. Assuming that the two population proportions are

different, the detailed formula for sd(d;) is \/P1J — P15)/11 + Py (1 — Py, ) /na, whereas if the pop-

ulation proportions are the same, sd ) is \/pj p] (1/n1 + 1/n2), where p; is the sample pro-
portion computed from the pooled sample

Looking at the experimentwise marginal confidence level, false simultaneous confidence regions are
most likely to occur when one uses a marginal confidence level. Therefore, the marginal confidence
level 1 — « should be adjusted. The adjusted confidence levels will depend on the unknown pa-
rameters P and D. These simultaneous confidence regions and adjusted confidence levels may be
estimated using the data and bootstrap resampling. To conduct a multiple test, one can obtain
the adjusted p values using the technique of Westfall and Young (1989). Let {pv;, j = 1,...,k}
denote the marginal p values relative to the null hypotheses. Let X7, ... s Xing, X31,..., X3,, be
#d according to a multivariate probability distribution that assigns a mass 1/n (n = ni + n2)
to each of the observed vectors X;; (i = 1,2; j = 1,...,n). Thus the X}, are distributed as 4id
MVBy (P, 1, D), where P = (1/n) Y Yi and D is the empirical probability measure of the observed
% tuples in the combined sample. Then the bootstrap adjusted p-values are given by

ad pvj = Pr [mm{PV i=1,...,k} < pvj] ,

where the pv] are the random p-values from the bootstrap sample (sce e.g Westfall and Young,
1989). If we invert the two-sided multiple tests, we obtain the simultaneous confidence regions.
Jhun and Jeong (2000) proposed the bootstrap simultaneous confidence intervals to contrast several
multinomial populations by using the maximum quantities of each pivotal statistics.
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2.2. Bootstrap simultaneous confidence regions

We apply the bootstrap method to construct simultaneous confidence intervals for the difference of

proportions. The maximum order statistics of the random variable Z1, Zs, ..., Z; are given by
A _ |dl —d1| IdAz —d2| |dk _dk|
(k) = max = 3 = jeany =
Sd(dl) Sd(dg) Sd(dk)

and to estimate the sampling distribution of Z) we use the bootstrap distribution of

2 = max [ldl —di| | —da|  |d —dkf] .

sd(d;) * sd(d;) T sd(dy)

Let G(z) = P(Zx) < z(x)), G*(2) be the bootstrap cdf of Z{, and G*B(z) be its Monte Carlo
estimate. The conditional distribution of Z(}, converges weakly to the distribution of the maximum
order statistics of G(z) because the real-valued maximum functions are continuous functions of
Z\,23,...,2Zy. Therefore, we have that G*(z) converges in distribution to G(z). If B bootstrap
replicates have been obtained, a 100(1 — a)% simultaneous confidence region for d; = p1; —p2;,5 =
1,...,k is given as
[dj € d; £Q*5(1 — a)sd(d)), for all j =1, .. k] ,

where Q*2(1 — a) is (G*®)7(1 - a).

The large-sample validity of the proposed intervals depends on the limiting behavior of the distribu-
tion G*(-). Because the bootstrap cdf of Z{y, converges weakly to the true conditional distribution
Q*(p) — Q(p) (pointwise for 0 < p < 1), where Q* = G*~! is theoretical bootstrap percentile func-
tion. In practice, the endpoints of the interval are estimates of Q" (1 — ), since a finite value of B is

used. From the Glivenko-Cantelli lemma, we know that Q*Z(p) converges to Q*(p) in probability
as B — oo (Freedman, 1984; Thombs and Schucany, 1990).

To test the null hypotheses Ho; : p1; = p2;, the two-sample Z statistics are used as follows.

Z ﬁlj _ﬁZj

e (R )

J
where p; = (n1p,; +n2Py;)/(n1 + n2) with pooled samples.

Constructing a confidence interval using the maximum pivots in Z(i), 7 = 1,...,k is equivalent
to the method of adjusting the p-values in multiple tests. The difference between the confidence
intervals and testing procedures, however, is in the resampling methods for bootstrap samples. In
multiple tests, in order to adjust p-values, a pooled sample should be used since the pivotal statis-
tic depends on the null hypothesis. When constructing confidence intervals, however, there is no
need to pool the samples. It is therefore reasonable to use non-pooled samples when construct-
ing confidence intervals. Moreover, constructing simultaneous confidence intervals provides more
information than adjusting the p-values. In a real computational problem, adjusting p-values and
constructing simultaneous confidence intervals can be done regardless of pooling the sample. We
expect that the use of a pooled or non-pooled sarmple will impact statistical robustness. We will
therefore examine which of the two methods is more robust.
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2.3. Bonferroni-style simultaneous confidence regions

Bonferroni’s inequality plays an important role in the construction of simultaneous confidence inter-
vals for the difference of proportions. Let k denote a component of a multivariate binomial random
vector, then 100(1 — a)% Bonferroni simultaneous confidence intervals are

d, j:z(Qk) sd(d;), forall j=1,... Kk,

where z(a/(2k)) is the 100(1 — a/2k)™" percentile of the standard normal distribution. If positive
dependence can be assumed, the Siddk method may be less conservative than the Bonferroni method
(see e.g. Holland and Copenhaver, 1987). Siddk simultaneous confidence intervals take the form

1

d}:tz(l— (1—%)E>sd(ﬁj), for all j=1,... k.

These techniques are simple functions of the experimentwise marginal confidence level. They are
computationally quick and easy, but these methods lack utility in that they fail to account for the
discreteness and dependence structures of multivariate binomial data. For example, with perfectly
correlated multivariate binomial distributions, these simultaneous confidence regions are overly
conservative. Therefore, these procedures may be wasteful, in the sense that the probability error
rate is less than, rather than equal to, .

2.4. Pooled sample and non-pooled sample

Although it is reasonable to use the pooled bootstrap sample since only the test statistics rely on
the null hypothesis for multiple testing to control the significance level, we can anticipate there will
be discrepancies between using the pooled sample and the non-pooled sample when constructing
the confidence interval. The choice of sample will also be affected by the correlation between the
groups and the sample proportion vector. The upper and lower bounds for defining the simultaneous
confidence interval of d; are

L= (1’371 _ﬁjz) - Q*B(l - a)\/nflﬁﬂ(l _ﬁjl) +n2_1ﬁj2(1 "ﬁjz)a

U= (ﬁjl *ﬁjz) + Q*B(l - O‘)\/nl_1 ﬁjl(l _ﬁjl) + nz_lﬁjz(l - ﬁjz)a
where non-pooled sample statistics are

ZE}CI\)JP:maX |(P '*sz)_(P1*p2)| L i=1,... .k (2.1)

VB (1= Bij)/ma + B3, (1= p3,)/na

although the following two statistics can be used for pooled samples

(61, = 53,
VPL (L= Pi))/ma + Py (L= B3)/ma

255" = max Li=1,.. .k (2.2)

|(B1; —55,)]
\/p;(l — B (1/n1 + 1/na)

Z(*,SQ = max i=1,...,k (2.3)
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to obtain Q*E(1 — a).

To analyze the performance of the statistics using pooled and non-pooled samples, we performed
a Monte Carlo investigation and computed the familywise error rates. We limited our attention to
the cases where the proportions of the two groups are the same and when they are different and
when the correlations are same and when they are different. For convenience, equal proportions

and an equivalent correlation matrix were used for the correlation, where P1, P2 and p are as follows
when k£ = 5.

o Casel: P, = {0.50,...,0.50}, p=050; P;=1{0.50,...,0.50}, p=0.25.
e Case2: P, ={050,...,0.50}, p=0.75; P> = {0.50,...,0.50}, p = 0.50.
o Case3: PL={025,...,025}, p=050; P,={0.75,...,0.75}, p = 0.50.
o Cased: P, = {0.25,...,0.25}, p=0.25 Py ={0.75,...,0.75}, p = 0.75.

We consider cases where the sample sizes n1(n2) are the same and different and cases where the
nominal coverage 1 — a = 0.80, 0.90, 0.95 and 0.99. The algorithm of Park et al. (1996) was
used to generate the pseudo-random samples of the multivariate Bernoulli distribution with pre-
defined proportions and dependence structure. Table 2.1 shows the (1 —a)% bootstrap simultaneous
confidence levels computed using statistics from (2.1), (2.2), (2.3), the Bonferroni simultaneous
confidence levels, and the Siddk simultaneous confidence levels for the four cases. The Monte Carlo
simulation was repeated 1000 times.

Table 2.1 demonstrates many facts. First, there is a difference between statistics from (2.2) (BP1)
and statistics from (2.3) (BP2). The estimated simultaneous confidence levels from (2.3) have
lower nominal probabilities than the statistics from (2.2). In case 1, in fact, the BP2 method
appears optimal, but the results come from the fact that the confidence levels of Wald confidence
intervals have lower estimated confidence probabilities (Jeong et al., 2007). Secondly, in case 1, the
bootstrap method using a pooled sample (BP1) is slightly closer to the nominal probabilities than
the bootstrap method using a non-pooled sample (BNP). As the sample size increases, however,
the estimated coverages for the two methods converge to true the nominal coverage. Thirdly, in
cases 2, 3 and 4, the non-pooled bootstrap method is closer to the nominal probability than pooled
sample. This observation becomes even clearer when the difference between the sample sizes of
the two groups is large. In case 4, the non-pooled bootstrap method is much better than the
pooled bootstrap method. Fourth, the Bonferroni simultaneous confidence interval and the Siddk
simultaneous confidence interval are over-estimated relative to the nominal levels when the sample
size is larger. The results are not always over-estimated because discrete statistics do not converge to
asymptotic normality. For smaller samples, the Bonferroni and Siddk methods are underestimated
relative to the given nominal level, indicating that the estimated confidence levels of each of the
marginal variables is lower than the nominal level.

In general, the bootstrap simultaneous confidence level using a non-pooled sample yields more
feasible results. This trend is more apparent when the sample sizes of the two groups are different.

2.5. Average coverage probability

In this section, we investigate the performance of the bootstrap method when obtaining regions
for the difference of proportions, which is the lattice case. Some related theoretical background for
bootstrap methods is as follows. Let T, be a studentized sum of n iid random variables with a
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Table 2.1. Simulation resutts(BNP is the bootstrap method with non-pooled sample using Equation (2.1), BP1 is the bootstrap
method with pooled sample using Equation (2.2} and BP2 is the bootstrap method with pooled sample using Equation (2.3).
BON is Bonferroni method and SID is Siddk method)

n na I—a Case 1 Case 2
BNP BP1 BP2 BON SID BNP BP1I BP2 BON SiD
0.80 821 811 643 .814 814 813 .809  .638 803 .803
10 10 4.90 885 881 842 842 842 890 875 840 .843 843
0.95 962 840 854 848 848 .966 940  .854 846 .846
0.99 1.000 891 941 943 943 1.000 988  .944 949 649
.80 831 825 738 834 834 821 823 755 825 825
30 30 0.90 .909 910 .869 .909 .909 909 913 .S?’? 909 909
0.95 .956 954 934 952 952 .951 053 933 949 949
0.99 995 992 986 988 988 989 989 .982 085 985
0.80 795 804 766 847 799 807 810 779 .855 .808
50 50 0.90 .905 8501 871 918 918 912 911 .880 .924 924
0.95 959 1952 934 .959 .959 960 959 .938 961 961
0.99 989 987 982 085 985 992 994 989 989 089
0.80 805 805 .77Y .846 846 791 797 .T81 841 841
100 100 0.90 887 .894 873 915 914 .886 .888  .872 .508 .808
0.95 944 941 930 957 457 846 949 936 953 953
0.99 .986 0984 982 985 985 .991 991 984 .991 991
0.80 872 813 707 733 733 883 697 5668 .668 668
10 100 0.90 960 925 787 818 818 936 875 692 775 775
0.95 986 1950 .853 894 885 872 .922 801 867 .843
0.99 .990 989 927 936 936 991 990  .894 908 908
(.80 .806 802 758 .809 798 812 740 688 787 .T74
20 100 0.90 .906 899 859 880 .880 918 877 815 870 .870
0.95 957 4852 904 929 .929 962 936 .8&6 925 925
0.99 .997 891 960 .966 .966 .996 991 961 970 .970
n no 1-a Case 3 Case 4
BNP BP1 BP2 BON SID BNP BP1  BP2 BON SID
0.80 920 £676 651 672 672 .891 689 670 690 690
10 10 0.90 .978 876 .763 801 .801 .969 .881  .778 .802 .802
0.95 .983 914 819 911 911 978 919  .817 908 908
0.99 989 941 916 918 918 .984 936 921 922 922
0.80 788 764 741 792 792 811 784 .7B2 814 814
30 30 0.90 H00 870 824 896 896 .903 879 842 801 .901
0.95 .968 922 906 909 .909 872 929 914 817 917
0.99 999 974 962 962 962 1.000 977 971 973 973
0.80 799 762 710 .806 .806 .802 784 750 810 810
50 50 0.90 881 867  .866 .886 884 .890 873 871 891 .890
0.95 .945 930 .894 938 .938 958 945 904 950 950
0.99 997 978 972 984 984 .996 982 976 987 987
0.80 796 782 .TT7 .852 852 788 77 767 .828 828
100 100 0.90 894 876  .867 910 907 .892 865  .850 910 909
0.95 946 .938 929 857 957 .943 932 927 951 950
0.99 987 879 975 992 .992 990 983 979 .991 991
.80 812 803 675 746 7129 786 721 589 708 689
10 100 0.90 .855 837  .765 800 800 823 783 710 755 .755
0.95 .895 929 805 .818 817 .890 840  .755 7 775
0.99 .958 977 830 834 834 974 966  .786 790 790
0.80 801 763 700 771 763 813 710 646 764 760
20 100 0.90 911 869 807 851 848 924 836 .T74 .838 835
0.95 .959 919 871 893 893 .965 913 842 891 891
0.99 .989 975 927 936 936 990 971 925 944 943
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Table 2.2. Average coverage probabilities for the simultaneous confidence regions(BON: Bonferroni method, SID: Siddk method,
BNP: bootstrap method using non-pooled sample, Bootstrap replication B = 2000, simulation replication M = 5000, k = 5)

o 1] p = 0.00 p=025 p = 0.50 o = 0.80
L= BON SID BNP BON SID BNP BON SID BNP BON SID BNP
0.80 | .7278 7278 8426 7168 .7168 .8758  .7664 .7664 .8334 8424 8424 .7886
1o 090 |.8640 .8640 9230 8542 8542 .9500  .8590 .8590 .9258 9054 .9054 .9134
0.95 |.8980 .8980 .9706 .8864 .8864 .9836 .8838 .8838 .9782  .9204 .9204 .9688
0.99 | .9742 9742 .9994 9520 .9520 .9998 .9526 .9526 .9998  .0664 .9664 .9998
0.80 | .7968 .7968 8136  .7876 .7876 .8084 8160 .8160 .8050 .8740 .8740 .7992
5o 090 [.8024 8924 0080 8894 .8894 9058 .9018 9018 .9048  .9266 .9266 .8938
0.95 | .9500 .9460 .9594  .9477 .9475 .9580 .9506 .9496 .9504  .9695 .9590 .9494
0.99 |.9872 9872 .9920 .9830 .9830 .9936 .9841 .9840 .9912  .9870 .9870 .9908
0.80 | .8176 .7868 8014 8044 7844 .7960 8272 .8122 7980 .8848 .8710 .7946
5o 090 [.9030 8970 8996 8972 .8964 .9028 9106 9104 .8964 9362 .9362 .9014
0.95 | 9434 9434 9504 9412 9412 .9492  .9507 .9504 .9520 .9666 .9666 .9498
0.99 |.9886 .9886 .9904 9854 .9854 .9902 .9904 .9904 .9902  .9926 .9926 .9928
0.80 |.8162 .8092 .8088 8156 .8096 .8018  .8488 .8418 .8064 .0004 .8948 8038
100 090 [ 9048 9042 9096 9024 .9016 8968 9174 9166 8994 9450 9442 .9042
0.95 |.9502 .9502 .9588  .9505 .9502 .9520 .9512 .9512 .9488  .9686 .9686 .9522
0.99 | 9904 9904 9926 9888 .9888 .9914  .9903 .9903 .9910 9938 .9938 .9922

distribution function F,(-), and let H,(w,t) = P, [T < t]. If H,(w,t) is the coverage probability of
a confidence set at w, then [, H,(w, t){(w)dw can be regarded as the long run relative frequency of
coverage in many independent replications of the experiment, where w is drawn from the density &;
therefore, [, Hn(w,t)f(w)dw can be called the average coverage probability at £. In the non-lattice
case, Singh (1981) showed that the bootstrap estimator of the sampling distribution of 7., differs
from the actual distribution by an order of magnitude smaller than 1/4/n with probability one as
n — oo. In the lattice case, Woodroofe and Jhun (1988) showed that in terms of average coverage
probability, the bootstrap estimator differs from very weak expansions by a term of order 1/y/n.
However, it was also shown that the coefficient of the term is very small for any £ with compact
support.

In summary, for a fixed vector of the proportions of a multivariate binomial distribution, the actual
coverage probability of a simultaneous confidence region is the probability that the simultaneous
confidence region contains that vector. However, one can probably interpret simultaneous confidence
coefficients in terms of average performance. In this case, the bootstrap method has an advantage
over the normal approximation method. By using the average coverage probability, the performance
of the bootstrap simultaneous confidence regions are compared with that of its competitors. We
obtained results [, Hn(w,t){(w)dw for a uniform distribution defined by (pi1,...,pis) for each
group 4 and four different dependence structures defined by D: (1) Independent structures, (2) D
with relatively weak equal correlations (p=0.25), (3) D with equal correlations (p= 0.50), (4) D
with relatively strong equal correlations (p=0.80). Though this evaluation may suggest a Bayesian
approach to inference, we restrict our attention in this paper to comparing the four correlation
structures for the three methods described previously.

Table 2.2 shows the average coverage probabilities for the uniform averages of the parameter val-
ues at various correlation structures, for nominal 80%, 90%, 95% and 99%, Bonferroni, Siddk and
bootstrap simultaneous confidence levels. This was repeated 5,000 times independently in order to
get an estimate of the average coverage probability. Some conclusions can be drawn from the simu-
lations. First, when the sample size is small (n1(n2) = 10), the Bonferroni and Sidék simultaneous
intervals have lower estimated coverage probabilities than the nominal ones. This contradicts the
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Table 3.1. Simultaneous confidence intervals and p-values, with multiplicity adjustments for six tests using the Brown and Fears
data{BON: Bonferroni methods, SID: Siddk methods, BPQ: bootstrap methods using pooled sample, BNF: bootstrap methods
using non-pooled sample)

1 —a Method Liver Lung Lymph Cardio. Pituitary Ovary
BON  (-.0304 .2501) (—.1545 .0917) {—.1954 .0659) (—.0137 .1329) {—.0491 .0663) (—.1137 .0243)
80 SID  (—.0293 .2489) (—.1534 .0907) (—.1943 .0649) (—.0131 .1323) (—.0487 .0658) (—.1131 .0238)
’ BPO  (-—.0296 .2492) (—.1537 .0909) {~.1946 .0651) (~.0133 .1324) (—.0488 .0659) (—.1132°.0239)
BNP  (~.0294 .2490) (—.1535 .0908) (~.1844 .0650) (~.0132 .1323) (~.0487 .0658) (—.1131 .0238)
BON  (—.0641 .2837) (—.1840 .1212) (—.2267 .0973) (—.0313 .1505) (—.0630 .0801) (—.1302 .0409)
95 SID  (—.0638 .2835) (—.1838 .1210) {—.2265 .0971) (—.0312 .1503} (—.0629 .0800) (—.1301 .0408)
' BPO  (—.0630 .2827)(—.1830 .1203) (~.2258 .0963) (—.0308 .1499) {—.0625 .0797) (—.1297 .0404)
BNP  (—.0657 .2853) (—.1854 .1226) (—.2283 .0988) (—.0322 .1513) (—.0636 .0808) (—.1310 .0417)
Raw p-value .0990 5871 .2920 .0899 7530 1661
Adjusted p-value
Bonferroni .5938 1.0000 1.6000 .5392 1.0000 .9965
Sidék .4649 9951 8741 4317 .9998 6637
Westfall(BPO) 4586 9953 .8833 4377 .9999 6673
Westfall(BNP) 4726 9954 8788 4357 5997 6708

properties of these methods. The low simultaneous coverage may be due in part to the marginal
confidence intervals, which can exhibit severe underestimation when the sample sizes are small.
Similar phenomena can be found in Beal (1987)’s Table 1 and 7. When sample sizes are large, how-
ever, these intervals have greater estimated average coverages than the nominal ones. Increasing
the sample size does not help the overestimation problem. Throughout Table 2.2, there is a tiny
difference between the Bonferroni and Sidék methods (except for 1 ~ a = 0.8). This is because
the Bonferroni marginal confidence levels of 96%, 98%, 99% and 99.8% are the almost the same
as the Siddk marginal confidence levels 95.63%, 97.91%, 98.97% and 99.79% when one constructs
the simultaneous confidence levels of 80%, 90%, 95% and 99% with & = 5. Secondly, note that
the Bouferroni and Siddk simultaneous confidence levels are severely affected by the correlation
structure. For example, when ny (n2) = 100 and 1 — o = 0.8, the Bonferroni confidence levels
increase from 0.8 (p = 0.2} to 0.8488 {p = 0.5) and to 0.9004 (p = 0.8). By contrast, the bootstrap
simultaneous confidence levels are surprisingly close to the nominal confidence levels even for the
strong concordance correlation. Thirdly, the bootstrap method is more accurate in terms of aver-
age coverage probability. In general, when p = 0 (perfect independent structure), there may be no
difference between the methods used for simultaneous confidence intervals. The convergence rate of
the average coverage probability to the nominal coverage as sample sizes increase is faster under the
bootstrap method than using the normal approximation or the Bonferroni and Siddk methods. Note
that the bootstrap intervals exhibit stability when ny(ng) < 30. Overall, the bootstrap confidence
regions tend to outperform the classical ones in terms of having average coverage probabilities close
to nominal confidence levels.

3. Examples

3.1. Weak correlation structure data

We construct simultaneous confidence intervals for the Brown and Fears (1981) data with a weak
correlation structure. This example data was also examined by Westfall and Young (1989) for
multiple testing (Jeong et al., 2007). We are interested in the difference in the proportions of
neoplastic lesions found in tissues between the high-dose group and the low-dose group. The low dose
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Table 3.2. Simulated random sample from two different multivariate Bernoulli distribution(Group 1: equal correlation with 0.8,
Group 2: equal correlation with 0.9)

Group 1 Group 2
X1 X2 X3 X4 Frequency X1 X2 X3 X4 Frequency
0 0 0 0 344 0 0 0 0 590
0 0 0 1 1 0 0 0 1 0
0 0 1 1 2 0 0 1 1 1
0 1 0 1 5 0 1 0 1 2
0 1 1 0 2 0 1 1 0 1
0 1 1 1 45 0 1 1 1 21
1 0 0 1 4 1 0 0 1 4
1 0 1 0 5 1 0 1 0 1
1 0 1 1 34 1 0 1 1 28
1 1 0 0] 3 1 1 0 0 1
1 1 0 1 44 1 1 0 1 19
1 1 1 0 32 1 1 1 0 22
1 1 1 1 479 1 1 1 1 310

group(4ppm and 8ppm) contains n; = 98, and the high-dose group(16ppm and 50ppm) contains
nz = 93. We assume that the two groups follow a multivariate binomial distribution.

The simultaneous confidence intervals of Bonferroni(BON), Siddk(SID), bootstrap using a pooled
sample(BPO) and bootstrap a using non-pooled sample(BNP), raw p-values and adjusted p-values of
Bonferroni, Sidék, Westfall and Young’s bootstrap method using a pooled sample and the bootstrap
method using a non-pooled sample are all given in Table 3.1. The confidence coverages 1 —a = 0.8
and 0.95 are considered.

The two smallest p-values for these data are cardiovascular, low-dose versus high-dose (p-value =
0.08987) and liver, low-dose versus high-dose (p-value = 0.09896). The adjusted p-values based
on 10,000 simulated data sets under the complete null hypothesis show that they are no longer
significant. Note that the adjusted p-values for the Bonferroni method are larger than those for
other two methods. The adjusted p-values for the Siddk method are similar to those for the bootstrap
method. In turn, the simultaneous confidence intervals give the more information than the adjusted
p-values. All of the simultaneous confidence intervals contain zero. The results are the same for
multiple testing. Note that the simultaneous confidence intervals for the Sidék method are similar
or equal to those for the bootstrap method at the 80% confidence level and are similar to those
for the Bonferroni methods at the 95% confidence level. For this example, at the 95% confidence
level, the bootstrap simultaneous confidence intervals are wider than those of the other methods.
These phenomena may be attributed in part to the fact that confidence intervals of Bonferroni
and Sidék methods are short primarily because of underestimation stemming from the normal
approximation. The similarity of the three methods may be due to the fact that the three sites
(cardiovascular, pituitary and ovary) have the low marginal totals (nearly zero) and the fact that
correlation structure of six sites is nearly independent. When the data are sparse, the simultaneous
bootstrap confidence intervals may be too wide.

3.2. Strong correlation structure data

We construct the simultaneous confidence intervals for the simulated data with a strong correlation
structure. The 1,000 random samples of the first group are generated from a multivariate binomial
distribution with same proportion of 0.6 and the same correlation value of 0.8 and a second group
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Table 3.3. Simultaneous confidence intervals using the simulated data

1-o Method X1 X2 X3 X4
Bonferroni (1615 2705) (1797 2883) (1605 .2695) (1746 .2834)
95 Sidak (1616 .2705) (1798 2882) (1605 .2695) (1747 .2833)
Bootstrap({pool) (.1662 .2659) (.1843 .2837) (.1652 .2649) (.1793 .2787)
Bootstrap(non-pool) (.1662 .2658) (.1844 .2836) (.1652 .2648) (L1793 .2787)
Bonferroni (1500 .2820)  (.1683 .2007)  (.1490 .2810) (1632 .2948)
99 Sidak (1500 .2820)  (.1683 .2097) (1490 .2810)  (.1632 .2948)
Bootstrap(pool) (1524 2796) (1707 .2974) (1515 .2787)  (.1656 .2925)

Bootstrap(non-pool}

(.1537 .2783)

(1719 .2961)

(.1527 .2773)

(1669 .2912)

Raw p-value .0000 .0000 .0000 .0000
Adjusted p-value
Bonferroni-style .0000 .0000 .0000 .0000
Sidak-style .0000 .0000 .0000 .0000
Westfall-style (pool) .0000 .0000 .0000 .0000
Westfall-style (non-pool) .0000 0000 .0000 .0000
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with same proportion of 0.4 and the same correlation value of 0.9. The simulated data are given in
‘able 3.2. The simultanecus confidence intervals of the Bonferroni, Siddk and bootstrap methods
using a pooled sample and a non-pooled sample are given in Table 3.3. The confidence coverages
1—a = 0.95 and 0.99 are considered. Bootstrap replication are 10,000 times. The estimates of the
proportions with four variables are (.601 .385), (.610 .376), (.599 .384) and (.614 .385). The raw
p-values are all zero. In this case, simultaneous confidence intervals are useful for comparing the
difference of proportions.
Table 3.3 shows the advantage of the bootstrap method. The adjusted p-values are all computed
to be zero for two groups with different proportions when the sample size is large, but the simul-
taneous confidence intervals are more useful than the adjusted p-values in that they provide more
information. Note that the simultaneous confidence intervals for the bootstrap method using a
non-pooled sample are shorter than those for the Bonferroni, Siddk and bootstrap methods using
a pooled sample. In this example, the Bonferroni and Sidék simultaneous confidence intervals are
again grossly conservative because there are strong correlations between the four variables.

4, Conclusion

For two groups with data from a multivariate Bernoulli distribution, techniques for constructing
simultaneous confidence regions for differences of proportions have been presented. The adjusted
p-values and simultaneous confidence intervals are standing on the same paradigm. The maximum
pivot statistics have been employed to construct the simultaneous confidence regions for the entire
collection of marginal confidence intervals of dj, j = 1,...,k. Especially for the simultaneous
confidence intervals, the proposed bootstrap methods using non-pooled samples are more accurate,
at least in terms of average coverage probability, and this result is reasonable since it considers the
dependence structure of the multivariate Bernoulli distribution.
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