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ABSTRACT

When a comparison is made with respect to the unknown best treat-
ment, Hsu (1984, 1985) proposed the so called multiple comparisons
procedures with the best in the analysis of variance model. Applying
Hsu’s result to the analysis of covariance model, simultaneous confidence
intervals for multiple comparisons with the best in a balanced one-way
layout with a random covariate are developed and are applied to a real
data example.
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1. INTRODUCTION

In the analysis of covariance (ANCOVA), a most commonly used method
to obtain simultaneous confidence intervals for all pairwise differences of treat-
ment effects is the one proposed by Tukey (1953) and Kramer (1957). Tukey-
Kramer method is applicable when covariates are fixed constants. When there
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is a random covariate, Thigpen and Paulson (1974) gave exact simultaneous
confidence intervals for all pairwise differences of treatment effects. Bryant
and Paulson (1976) and Bryant and Bruvold (1980) extended the result by
Thigpen and Paulson to more general settings.

When the comparison is made with respect to the unknown best treatment,
Hsu (1984, 1985) proposed the so called multiple comparisons procedures with
the best (MCB) in the analysis of variance model. There has not been any
result regarding MCB type inference in the analysis of covariance. This paper
develops MCB type confidence intervals in a balanced one-way layout with a
random covariate.

Section 2 introduces a model and states some preliminary results. Section 3
derives simultaneous MCB type confidence intervals, and a real data example
is considered in Section 4. All the proofs are given in the appendix.

2. NOTATIONS AND SOME PRELIMINARY
FACTS

Consider the following ANCOVA model

y11=y’1+13(w1]_£)+51]5 Zzlvak’ ]:13377' (21)

where (z;;,y;;) are assumed to be independently distributed with bivariate
normal distributions having the mean vectors (¢, #;)’, the variances o2, o2 and
the covariance o,,. Here, p;, --,u; denote the unknown treatment effects, 3
is the unknown regression coeflicient, and ¢;;’s are unobservable errors with
mean 0 and variance o?. It should be noted that under the model (2.1) the

following relations hold:

2

B =o0y/0l and o =0k~ 02 /ol (2.2)

The unbiased estimators of the parameters involved are
é = f--a B = Szy/Sa:za /}i = gi- - B(jz - f..), &2 = (Syy - Sﬁy/Szz)/V

where Z;,, z., and ;. denote the sample means, S, S,,, and Szy are the usual
sums of squares and the sum of products, respectively, and v = k(n — 1) — 1.
It is well-known (for example, Rao (1973) pp. 201-209) that
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Ty = (Sex)V*(B — B) )0, Tp =v6*/0?, and Ts = S.y/0?

are independently distributed with the standard normal distribution, chi-square
distributions with degrees of freedom v and (v + 1), respectively. Furthermore
B, 6% and (Z,.,3:.) (i = 1,---,k) are independent. It follows that

Ty = 0u(v + 1)V = B)[o = Ty / {T5/(v + 1)}"/?
has a t-distribution with (v + 1) degrees of freedom, and is independent of
T, = v6%/o?. Consequently,

Ts=(1+T}/(v+1)™
has a beta distribution with parameters (v +1)/2 and 1/2.

In deriving an MCB procedure under the model (2.1), we shall need the
pdf of

W= (T,Ts/2)2 = | | v6*/o? v 2.3
_(25/) —{51_,{_0_3(,3_5)2/02} ()

in Section 3. The following lemma gives the pdf of W.
Lemma 2.1. The pdf of W in (2.3) is given by

gu(w) = F—(Z%Q—)w"-l {1 - ¢>(\/§w)}, w >0 (2.4)

where I'(-) is the gamma function and ®(-) is the cdf of the standardized normal
distribution. '

3. MULTIPLE COMPARISONS WITH THE BEST

Hsu (1984, 1985) constructed simultaneous confidence intervals for i —
maX;y; ;(¢ = 1,---, k) in the case of one-way balanced ANOVA model. Fol-
lowing his idea, we develop simultaneous confidence intervals for Mi—TNaX;z; f;
under the ANCOVA model (2.1). Suppose that a positive d = d(k, v, a) is cho-
sen so that
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Pg(ﬂk>m£g<ﬁj—d&/\/ﬁ) =l-a (3.1)
j

for a given 0 < a < 1. Here, Py (-) means that the probability is computed
when gy = -+ = g = 0. The explicit determination of d is given in the next
lemma.

Lemma 3.1. The positive constant d in (3.1) is determined by solving
t-a=[" [/°° &1z + d 2/1/w)d<I>(z)] a(w)dw  (3.2)
0 -—00
where g,(w) is given by (2.4).

Once a positive constant d is determined by (3.1), simultaneous confidence
intervals for y; —max;z; ; (¢ =1,---,k) can be obtained in a manner exactly
similar to Hsu (1984, 1985)’s. For the sake of completeness, the proof of the
next result is included in the appendix.

Theorem 3.1. The 100(1 — «)% simultaneous confidence intervals for
pi —max;g p; (1 =1,---,k) are given as follows:

pi = maxp; € (i - maxji; £ do/Vn)E, i=1,- 0k (33)
3 j#

where d is determined by (3.2) and z*(z~) denotes the positive (negative, re-
spectively) part of z.

To implement the simultaneous confidence bounds in (3.3), we need to find
the values d = d(k, v, a) by (3.2). The values of d are tabulated in Table 2 at
the end of the paper for k = 2, 3, 4, 5, v = 5(1)20, 26, 30, 60, 90, 120, oo, and
a = 0.01.

The defect of the confidence intervals in (3.3) is that they always contain
0. This means that even if a treatment is inferred to be the best by those
intervals, no positive lower bound on how much it is better than the rest can
be given by the intervals in (3.3). Such a defect was noted by Hsu (1985), and
he called the intervals of the type (3.3) the constrained confidence intervals,
while he devised the so-called unconstrained confidence intervals by employing
slightly larger cutoff points in the case of ANOVA model. Such a modification
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to the confidence intervals in (3.3) can be carried out in exactly the same
manner as that in Hsu (1985). Thus the results will be stated without proofs.
Let ¢ = c(k, v, a) be a positive constant satisfying

Py (mﬁcﬂj—-c&/\/ﬁ<ﬂk</2k_1+c&/\/h_) =1l—a (3.4)
2

for a given a. Methods similar to those in Lemma 3.1 can be used to show
that (3.4) is equivalent to the following.

g(w)dw=1-a (3.5)

where g,(w) is given by (2.4). The cutoff points ¢ satisfying (3.5) are also
tabulated in Table 2 at the end of paper for selected values of k, v and & = 0.01.
Note that c-values are larger than the d-values, reflecting more restriction in
the probability statement in (3.4) than (3.1). The table of the values of ¢ and
d for a = 0.05 has been omitted now to save space, although it is available
from the author.

Let (k) denote the random index corresponding to the largest f; (i =

1,---,k), ie. f(k) = maX;<i<k fii- Define the confidence bounds as follows:
Li:ﬂi‘mgxﬂj“‘?&/\/ﬁ (izly"'sk), (36)
I#1

v = { min{(ﬂi—r?gfﬂﬁc&/\/r_l)’L,—L(k)}, t # (k) (3.1

| A maxi + /v, i = (k).
The next result gives the so-called unconstrained confidence intervals.

Theorem 3.2. The 100(1 — «)% simultaneous confidence intervals for
pi —maX;z; p; (¢ =1,---, k) are given by

Lisps—maxp; SUp i=1,---,k (3.8)
J#i

where L; and U; (: = 1,---, k) are defined by (3.6) and (3.7).

As noted previously, the lower bounds given by (3.3) are always non-positive
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while the lower bounds provided by (3.8) can be positive. By employing the
confidence bounds in (3.8), we can provide a positive lower bound for p(x) —

maXjx(k) 4 When pk) > maX;z) pj + 6 /v/n.

4. A REAL DATA EXAMPLE

The data in Table 1 below are cited in Wildt and Ahtola (1978). They are
the records of traffic accidents in 12 rural municipalities in Finland for two
years.

Table 1.  Traffic Accidents During the Test Period (y) and
Traffic Accidents During Preceding Year (z)

Type of Liquor Licensing (Treatments or Groups)

No Store or Restaurant | Package Store Only | Restaurant & Package Store
(Group 1) (Group 2) (Group 3)
T /] x Y z Y
190 177 252 226 206 226
261 225 228 196 239 229
194 167 240 198 217 215
217 176 246 206 177 188

We assume the ANCOVA model in (2.1) for this data set. The ordinary F-test
for the hypothesis Hy : p1 = p2 = p3 rejects Ho at @ = 0.01, where y; is the
average impact of liquor licensing in the ¢-th group on traffic accidents. It does
not, however, give any idea about which group has higher impacts.

The cutoff values of the confidence intervals in (3.3) and (3.8) can be found
from Table 2 for a = 0.01, which are given by

d(3,8,0.01) = 4.92 and ¢(3,8,0.01) = 5.41.

Using these values, we obtain the following 99% simultaneous confidence in-
tervals from (3.3), (3.6), and (3.7):

99% Constrained | Unconstrained
w1 — max(pg, u3) | [-56.24, 0] | [-58.61, -4.97]
p2 —max(p, pu3) | [-54.94, 0] | [-57.31, -4.97]
ps — max(pq, p2) | [0, 54.94] [ 4.97, 57.31]
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From the constrained confidence intervals, we can conclude that group 3 has
the largest impact on traffic accidents, while the unconstrained confidence
intervals give additional information about how much higher impacts group
3 has than the other groups. Finally, we remark that Thigpen and Paulson
(1974)’s method does not separate group 3 from the other groups at 99%.

Table 2. The cutoff points d(k,v, @) and c(k, v, a) for a = 0.01
d(k,v,a) c(k,v,a)
k| 2 3 4 ) 2 3 4 )

51525 6.12 6.62 697|635 6.89 7.26 7.52
61480 555 598 6.28|5.72 6.17 6.48 6.71
71452 518 556 5.82 (532 35.71 598 6.18
81433 492 527 551|504 541 5.64 5.82
91418 474 506 529484 5.18 540 5.56
10 | 4.07 4.60 490 5.11|4.69 5.00 521 5.37
111398 449 4.78 498 |4.57 487 35.07 5.21
12 391 441 4.68 4.87|4.48 4.76 495 5.09
13 3.84 433 4.60 4.78|4.40 4.67 485 4.99
14 | 3.80 4.27 4.53 4.71 | 433 4.60 4.77 491
15 3.76 4.22 447 465|427 453 4.71 4.84
16 | 3.73 4.17 4.42 459|423 448 4.66 4.78
171370 4.13 438 4.55|4.19 443 461 4.73
18 | 3.67 4.10 4.34 450 | 4.15 439 4.56 4.69
19 | 3.65 4.07 430 4.47|4.13 436 4.52 4.65
20| 3.63 4.04 4.27 443 4.09 433 449 461
26 | 3.53 3.93 4.15 430397 420 4.35 4.46
30| 3.49 388 4.10 4241392 414 4.28 4.39
60 | 3.37 3.73 392 4.06|3.76 396 4.09 4.19
90 | 3.33 3.68 3.87 4.00|3.71 391 4.04 4.13
120 | 3.31 3.65 3.84 3.97|3.68 3.88 4.01 4.10
oo | 3.25 3.58 3.77 3.89]3.62 3.80 3.92 4.01
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APPENDIX
Proof of Lemma 2.1 It follows from the joint distribution of T, and T that
the joint pdf of W = (T,75/2)!/? and Z = T,/2 is given by

v, ,—z
w’e 2

14
flw,2) = NGO IDPY T z>w, w>0.
Thus the pdf of W is given by
v J (A1)

9= Zr e 2 Y e
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The integral in (A.1) can be evaluated by considering the Laplace transform

L{h} of

fore) e-tz
h(t) ZZU? z\/-_z:——_ﬁdz’ t> 0.

Simple integration shows that

£ =2 (4= o) 550

Thus, inverting this Laplace transform, we obtain
2r
h(t) = — <1 — ®(V2¢ t>0.
(1) =""{1-e(2tw)}, t>

Taking ¢t = 1, we obtain the integral in (A.1) so that the pdf of W can be
written in the form of (2.4) m.

Proof of Lemma 3.1 First, note that

ﬂk—ﬂj = {gk-‘"B(i'lv—6)}-{gj'"/é('ij-_€)}v .7 = 1""7k'—1

and that (Z;,3;.) ( = 1,---, k) are independently distributed with ﬂAAand a2,
Furthermore, the conditional distribution of §;. — B(z;. — ¢), given £, is the
normal distribution with mean p; and variance

(o) = 2Bowy + B02) In = {o* + 2(B - B)*} /n. (A-2)
The identity in (A.2) follows from (2.2). Therefore, when y;, = =g =0,
the conditional distribution of gy — f; (j = 1,-++,k — 1) given § and &2 can
be represented as follows: for j = 1,---,k—1,

Vil - i)fe 2 {* + G -0} (s-2)6 (A3)

where 2y, -, z; are independent standard normal random variables indepen-

dent of 4 and &, and 2 means that the distributions of both sides are the same.
Note that the right hand side of (A.3) can be written as (zx — z,)/(\/2/v W)
where W is given in (2.3). Thus, the probability in (3.1) can be written as
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Py (zk > max z; — d\/2/v W)
= J#k

where 2y, -, 2; are independent standard normal random variables, and are
independent of W. Hence the equation (3.2) follows m.

Proof of Theorem 3.1 Consider a pivotal event

E = (i = mwy > max(fs ~ pi) = d&/+/n)
where pp) < p2) £ - -+ < px denote the ordered pq,uz, - ,ux. Note that by
(3.1)

Py(E)=1—a forany 0= (ui,---, &, B, az,az,ary).

Thus, it suffices to show that the event E implies the lower and upper con-
fidence bounds in (3.3). The upper confidence bounds in (3.3) are obtained
from the following:

E (”[k] —pi < R — i + do/\/n for all i # [k])

C (g —maxp; < fig — fi; + dé//n for all j # [k])

i#[k]
= (up — max ;< fip) ~ max f; + dé//n and

pi —max p; < (i —max i +dé//n)" for all i # [k])
JFt JF .
C (/‘i—mg?(llj_<_(ﬁi-—m£xﬂj+d&/\/r_z)+ for all 7).

I J#

The lower confidence bounds in (3.3) can be obtained similarly as follows:

E = (pi—pp < i — g — dé//n for all i # [k])
C (mi = wy > i — max fi; — do//n for all i # [k])
JF1

(ke — max ;2 —(fp — max ji; — d&/ V)~ and
Wi = max pj > fii —max i — d5/v/n for all i # [k])
J#i J#i

C (wi —maxp; > —(fi — max ji; — d&/\/n)~ forall i),
JFr JF

which completes the proof m.



