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ABSTRACT

For all pairwise comparisons of treatments, Bayesian simultaneous confidence intervals
are proposed and studied. First Bayesian solutions are obtained for a fixed prior, and then
prior parameters are estimated by a parametric empirical Bayesian method. The nominal
confidence level is shown to be controlled asymptotically. An extension to the utibalanced

design is also considered.

1. Introduction

Let 7, ***% denote treatment means based on # replications each, such that ~N(6;, ¢°/n),
i=1, ks independently, and let s* be an estimate of the error variance ¢® such that rs°/ c*~X/,
independently of 3, -*,%. This setting often represents a reduction of many balanced designs

for the comparison of treatments.
Tukey(1953) proposed simultaneous confidence intervals for all pairwise differences 8,—8; such

that
0—0,€[Fi— it Q..%s Vnl, (I<G<G<k) (1.D

where Q.. denotes the upper a quantile of the Studentized range distribution with parameters
k and 7.

This procedure, known as T-procedure, has been the prototype of multiple comparison procedu-
res. Following the T-procedure, various formulations including stepwise multiple tests have been
proposed for multiple comparison. See Hochberg and Tamhane(1987) for discussions about dive-
rse multiple comparison methods.
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Bayesian approach to multiple comparison has also been attempted, and Waller and Duncan
(1969) was the first to provide a Bayesian solution to this problem. Dixon and Duncan(1975)
derived minimum Bayes risk interval estimates for pairwise differences, and Duncan and Godbold
(1979) extended the results to the unbalanced case. In all these Bayesian studies, an additive
loss was assumed and therefore the procedures given by them have the nature of contorlling
per-comparison error rate.

The purpose of this article is to propose a Bayesian multiple comparison procedure which
controls experimentwise error rate. First we consider Bayesian simultaneous confidence intervals
with respect to a fixed prior, and then prior parameters are estimated by a parametric empirical
Bayesian method. It is shown that the nominal confidence level is controlled asymptotically for
the proposed procedure. Finally, the extension to the unbalanced case is also given.

2. A Parametric Empirical Bayes Procedure

The prior distribution of 8;,+--0, for given o® is taken to be
0: | &*~N(y, ¢*/¢c), i=1, .k, independently,

and the prior of o is assumed to be

p(eD=1/c
Then the joint posterior distribution of i, 8 given j,'**,5% and §°, is as follows :
(eh ttTy ek)l | jjy '"9_)71:’ 32~Tb(f.9 Xy 302112)’ (2. 1)
where T.(f, x, s/I,) denotes the k-variate ¢ distribution with p.d.f. proportional to
1 Zki=l(ei_xi)2
—. 2 M -2
[:1+ f Soz ] ’
with x=(x;, =+, 2)" and
it .
forbh, s= Tt =1,k (2.2)

198 ne TG y)?
= F L + v
The posterior distribution in (2.1) implies that, for y= @, 25"
l (Qi_xi)'—(ej’"xj) |

max y &~ Qs
I<i<G<h So e

where Q. denotes the Studentized range distribution with parameter % and f degrees of freedom.
Letting Q./° be the upper a quantile of Q., we have

P, [0—0cxi—x+ Qu/® s, Vit ly, S1=1—q, (2.3

which provides a 100(1—a) % simultaneous credible set for 8,—6;, 1<i<j<k, and it will be
called the T-type Bayesian MCA (all-pairwise multiple comparison) procedure. Note that, in the
case of noninformative prior p(8, o®)=1/¢% f becomes » and we can formally plug in O for
¢ in (2.2). Thus in such a case the T-type Bayesian MCA procedure coincides with the classical
Tukey's T-procedure in (1.1).
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Before we present a parametric empirical Bayes procedure, consider an optimal property of
T-type Bayesian MCA procedure. Assume the following loss structure for interval estimates [a;,
bq] of 6,'_9,' for 1_<_Z<]Sk .

L(a, b: 8)= E, I{as b 66y, (2.4)

where, for a fixed constant B €(0, D,

(b—a) for a<<A<b (2.5)

(b—~a)+@—A) /B for A<a
a, b:A)= {
(b—a)+(A—=b)/B for A>b.

Then we have the following optimality result. Here #* denotes the upper B quantile of the
¢t distribution with f degrees of freedom.

Theorem 2.1 The T-type Bayesian MCA procedure given by (2.3) has minimum Bayes risk under
the loss structure (2.4) and (2.5) where o and B values are related by /24P =Q./.

Proof. See the Appendix.

In order to apply the T-type Bayesian MCA procedure, the values of prior parameters y and
¢ should be specified. When this is difficult, empirical estimations of them can be done using
the marginals. '

Note that for any fixed o?

3 | ~NQy, *(0/n+1/¢)), i=1,*,k, independently.
Hence, letting

1
=7

T

¥ and MS;= EE_T é_ Gi—7%
1 i=1
7 and MSr/n may be considered as the ordinary unbiased estimates of v and ¢*(1/n+1./¢c)
respectively for fixed o®>. Since s* is unbiased for o?, ¢ can be estimated by n/ (F—1), where
F=MS:/s?, the ordinary F-ratio in analysis of variance.

After making some corrections for negative values of n”/(F—1), we propose the estimates
of v and ¢ as follows :

v=y
62{ n/(F—1), if F>1 (2.6)
©, if F<I.

By substituting these estimates in (2.2), we have

1 1
o= {(I_F )3+ ?‘37, if F>1
7, if F<1 2.7
1 1 , .
&2:{ I_E)(I—;—?)SZ/H if F>7

0 if F<1
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Applying (2.7) to (2.3), we have the following procedure, which will be called the T-iype
parametric empirical Bayes(PEB)  MCA procedure.

1 1 .
(Gi—ej)6(1—7)+{(ﬁ—5’,<)i~ Qk.r+k(a)((1—;,—1;; )/(I_F)+)V2 \_;;;_}r ¥ 1], (2.8)

where 2" =max(x, 0).

It should be noticed that the T-type PEB MCA procedure is very semsitive to the value of
F, while the classical T-type procedure is irrelevant to F. For large values of F the former
contains less 0’ s than the latter, and for small values of F the former contains more 0’s. The
following example with artificial data illustrates this point.

Example 2.1. Suppose that the following artificial data given by Table 2.1 are taken from
a two-way layout with one observation per cell.

Table 2.1. Data from Two-way Layout

B: B; B; B, i
A 72.4 69.9 72.6 72.7 71.90
Az 79,1 80.9 85.9 77.7 80.90
As 65.4 69.4 67.8 64.6 66. 80
A 70.2 68.6 67.3 63.3 67.35
As 77.7 75.0 81.4 74.1 77.05
i 72.96 72.76 75.00 70.48 §=72.80

The numerical results of the analysis of variance are presented in Table 2.2 for convenience,
which show the high significance of the factor A even at 1%, and no significance of the factor
B at 5% (F3*®=3.49).

Table 2.2. ANOVA Table for the Data of Table 2.1

Source S.S. d.f. M.S. F
A 600. 740 4 150. 185 27.510
B 51.248 3 17.083 3.129
Error 65.512 12 5.459
Total 717.500 19

Suppose we choose a confidence level (1—a)=0.95. Then Qs =4.303, Qs> =4.508,
Qi1 =4,046, and Q. =4.199. The proposed T-type PEB MCA and classical T-procedure
confidence intervals are thus as given in Table 2.3, and the graphical representations are as
follows, where any means underscored by the same line are not significanlty different.
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As A Ah As A, Bi B: BB
PEB MCA = e e

Classical T ) —_— -

As mentioned previously, the T-type PEB MCA procedure separates more differences of means
than the classical T-procedure for the factor A which has a large value of F. On the othe hand,
for the factor B which has a small value of F(<Fs.,*®), the former separates no difference
of means while the latter separates B; and Bs.

Table 2.3. 95% Confidence Intervals (C.I.) by Two Procedures

differences C.I. by PEB MCA C.1. by Classical T
(2—ay) (3.885, 13.460)*  (3.734, 14.267)°
(as—ay) (-9.702, -0.127)* (-10. 367, 0.167)
(a—ay) (-9.172, 0.403) (-9.817, 0.717)
(as—ay) (0.175, 9.750)* (-0.117, 10.417)
(as—a,) (-18.375, -8.800)* (-19.367, -8.833)*
(as—ay) (-17.845, -8.270)* (-18.817, -8.283)*
(as—ap) (-8.498, 1.077) (-9.117, 1.417)
(aa—ay) (-4.257, 5.317) (-4.717, 5.817)
(as—as) (5.090, 14.665)* (4.983, 15.517)*
(as—aw) (4.560, 14.135)* (4.433, 14.967)°
(b—bw) (-3.513, 3.241) (-4.588, 4.188)
(bs—by) (-1.989, 4.765) (-2.348, 6.428)
(bs—by) (-5.064, 1.689) (-6.868, 1.908)
(bs—by) (-1.852, 4.901) (-2.148, 6.628)
(be—b2) (-4.928, 1.825) (-6.668, 2.108)
(bs—bs) (-6.452, 0.301) (-8.908, -0.132)*

* denotes the interval not containing zero.

3. Asymptotic Properties

In this section we consider the coverage probability of the T-type PEB MCA procedure. From
now on the event coverage is the event defined by (2.8).

First we consider the asymptotic coverage probability as » — c from frequentist’s point of
view.

Theorem 3.1. Suppose that 6. s are not all equal, and that r—> © as n—> . Then

lim Plcoverage | 61,-++,8: o*]=1—aq.

n—>ow

Proof. Since 0. s are not all equal, we have
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P[COUemge l 91, ."99129 Uz:]

=PIF>1, (0-8)e (1—3{ G G.1

+ Qurie® ((1—7’+k )/(1__))1/2 \/—z—} i1/ 01, Ons o’]

G=0)-G—=8) Vn_  (6-6)
=P[F>1, Zz’axlA{ T D s }
<Quo® 1 617,84 07,

where

1 1
A= Q,k.w(a)/Qk.er(u)) {(1 _F)/(l _r+k ) }1/2.
Note that, as n — o,

1 MS: 1 o 20,—0)°
W F= = = 129 DD oD -

Hence in the expression (3.1), as n =%, we have

Vi (8-6) %

(F-—- 1) s

Moreover it is clear that in (3.1),

Q‘_"sl/_\%_:i) S22 a5,

where Zi,*,Z, are independently distributed as N(0, 1).
Summarizing these, we have for given 8;,---,6: and &7

yi—8) — (35— 6; (9 6;

i

A, —>1 and

and  lim PLF>116,+,0.,0°1=1.

Thus the probability in (3.1) converges to 1—a as n—> .

It should be noted that, by applying the dominated covergence theorem to Theorem 3.1,
we have

lim Py, [Lcoverage]l=1—a.

n—>w

for any fixed y and ¢>0. Namely, the marginal coverage probability also converges to 1—a
as n—> o,

Now, as typical in empirical Bayesian approach, we consider the asymptotic posterior coverage
probability as the number of treatments & gets large. For this purpose we need the following
Lemmas, whose proofs are given in the Appendix.

Lemma 3.1. Let V~Q.. and %=O%). Then (V—2a.)./ b has limiting distribution
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as k—> o with density
g@=2¢ Ki(2e™), (3.2)

where K,(2) is a modified Bessel function of the second kind, and a. and b, are given as
follows :

1 .
a:= (2 log k)*— = (log log k+log 4m)(2 log k)™, (3.3
b=(2 log k)™~

Lemma 3.2 For any fixed 6°>0 and under the assumption of +=0), the following iden-

tities hold as k—> o

1 log log &
WF =, [1+0 ((2&%—)1@] a.s.,

log log k)w) s,

Git) max | G—%)— (xi—x) | =0((———

1Ki<i<k

@) g=1+0((F— =

log log k
& g Y2 [2(2 log k) *+0(D)] a.s.,

(zv) Qk.r(a) -—-Zak+ka(“) +0(bk) [

where K denotes the upper a quantile of the density g given by (3.2) and @ b: are given by
3.3).

It should be remarked that, in Lemma 3.2, §* is assumed to be represented as the average
of 7 i.i.d. o*X:® random variables. Now we are ready to present the asymptotic result for large
k as follows :

Theorem 3.2 For any finite v and ¢ and under the assumption of 1=0@), we have

iim P,Lcoverage | y, s*1=1—a a.s.

Proof. Note that

P, [coverage | y, 5%
e | (B—£)—(0—%) |
[_l’_n‘é_l.XiS_f;Sf_ B :9; ‘x'”‘ x‘ - <Qk r+k I Y 82]- (3' 4’)

Since

max I (Gi—ﬁ)—(ej—ﬁ) I

ISi<i<h

e max | (6i—x)—(6—x) | £ max | G—%)—(C—x) |,
1<<i<k 1<i<i<h

the probability in (3.4) is bounded by the following two probabilities :

[mang;qg I(B x,) (9 x,)l

So ) -

P,.
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8 C—%) — i Xj l
< & Ot max .. | (& Mx,) (xi—x;) Ly &,
So So
which are equal to ' ) y1
Max;<ic; 6i—x)—(6—x; So—2a
e SR (3.5)

<{ z—z Quri®t maxisizr | G—%)— (=) | /s—2a } /bu |y, 1,
respectively.

Furthermore it can be showr that the right hand side of the inside of the probability in (3.5)
converges a.s. to K by Lemma 3.2 and the dominated covergence theorem. Since the left
hand side of the inside of the probability in (3.5) has the limiting distribution with density
g in (3.2) by Lemma 3.1, the result follows.

As a final remark of this section, it should be pointed out that for large &, the T-type PEB
MCA procedure also provides and approximate minimum Bayes risk solution for the problem

given by Dixon and Duncan(1975) with the X value in their paper determined so that 1/2¢(K)
:Qk.r+h(a)(1_1/(k+r)).

4. Extensions to Unbalanced Designs

In the case of unbalanced designs, we have %~N(6;, o*°/n:), i=1,*,k, independently, and
7’/ c*~X?, independently of 7, *,5%. The prior distributions of 8,:**,0: and o® are just the
same as in Section 2.

Then simple calculations lead to the following joint posterior distribution of 8,, -+, 6, géven 31, =~ , 5
and s,

0;—x: 0:— 2
(T "ty ksk ), ‘ y’ Sz~Tk(f’ O’Ik)v (4‘v 1)

where f, x; and s; are given as follows :

_ _ noitey
{f—r-f-k, Xi— n,~+c ’ (4.2)
1 x en(Gi— ) .
=TT B e Tl isL ek

z

1 ﬂ/+c

7

Applying the result of Hayter(1984) to (4.1), we have the following inequality.
P,l0:—0,cxi—x+ Q. vV (si“’-f-sjz) 2, Vi#f | Vs s1>1—a. (4.3)

This provides a conservative 100(1—a) % simultaneous credible set for 8,—9,, 1<i<j<k.
Note that, in the case of noninformative prior for 8, f becomes » and the resulting confidence
intervals coincide with the classical Tukey-Kramer intervals proposed by Tukey(1953) and Kramer
(1956).

In fact, the well-known TK-procedure has been recommended most frequently over other
MCA procedures in the unbalanced designs(See Hochberg and Tamhane(1987), §3. 4. ).
However the conservative nature of the TK-procedure was proven much later by Hayter(1984).
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In this sense the Bayesian confidence intervals given by (4.3) will be called the TK-type Bayesian
MCA procedure.
Now we consider an empirical version of the TK-type Bayesian MCA procedure. Through

the analogous methods of Section 2, the estimates of y and ¢ are proposed as follows -

v=jy
{ . ke (F=1) for F>1
= {w for F<1,

where

5= 43/ E n), b={(E n¥ =% 27}/ G=1) 2 nl,

and F denotes the ordinary F-ratio in analysis of variance. Substituting these into (4.2), we
have

L e

2= T 0 1Lk s
_ 1 s oG g)?

= D+ R 4], i=1,k.
(nito) (r+k) jz=:1 ni+é 7’52] 1=1 k

§i2

Applying (4.4) to (4.3), we have the following procedure which will be called the TK-type
PEB MCA procedure.

O—0)Ex— %% Qui® /($2+8) .2, i), (4.5)

Of course if the #’s are all equal, then the PEB MCA procedures of TK-type and T-type give
same intervals for 6,—0;, 1<i<j<k.

The numerical results of Unsipaikka(1985) and Spurrier and Isham(1985), and simulation
results of Dunnett(1980) show that the extent of conservatism in the classical TK-procedure
is small even for cases of rather severe imbalance. For our Bayesian or PEB MCA procedures
of TK-type, this property is preserved since the conservatisms of these three procedures are
based on the same result of Hayter(1984). ‘

The following example with data taken from McClave and Dietrich II(1979) illustrates the
performance of the TK-type PEB MCA procedure in comparison with that of the classical TK-
procedure.

Example 4.1. Some varieties of nematodes(round worms that live in the soil and frequently
are so small they are invisible to the naked eye) feed upon the roots of lawn grasses and other
plants. This pest, which is particularly troublesome in warm climates, can be treated by the
application of nematicides. Data collected on the percentage of kill of nematodes for four particular
rates of application(letting A;, Az A; and A: for convenience) are given in Table 4.1.
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Table 4. 1. Percentage of Kill

Rate of application

Al AZ A(i A4
86 87 94 90
82 93 99 85
76 89 97 86
91
¥ 81.333 89. 667 95. 250 87.000

From the given data we have F=8. 634, which shows that the homogeneity hypothesis is rejected
even at 1% assuming the usual one-way model. Choosing a=0.05, we find that Q.1s“™ =4.151
and Q.. =4.415. Table 4.2 gives the 95% confidence intervals for the mean differences by
the TK-type PEB MCA procedure and the classical TK-procedure. In this case, TK-type PEB
MCA procedure separates 0:—0, and 0,—6s, while the classical TK-procedure does only 8;:—0..

However, to see the performances of the procedures under small F values, let us add 5 to
each element of first and fourth columns(i.e. 91,87,81 for 4; and 95,90,91 for As) so that
F=3.638 which shows no significance of the mean differences at 5% by the usual F-test. Then
after simple calculations it can be shown that our 95% TK-type PEB MCA procedure declares
no significant mean differences, while the 95% classical TK-procedure still separates 0:—6i.
In fact, the former provides (-0.148, 13.266) and the latter does(0.207, 17.626) for 6:—6:,
corresponding to the largest difference of sample means. These indicate the point that the TK-
type PEB MCA procedure provides sharp intervals for large F values, and conservative intervals
for small F values, in comparison with the classical TK-procedure.

Table 4.2. 95% Confidence Intervals by Two Procedures

difference TK-type PEB MCA Classical TK-procedure
(6.—6v (-0.524, 15.130) (-0.978, 17.644)
(6:—6) (5.001, 19.747)* (5.207, 22.626)°
(6,—6,) (-2.861, 12.793). (-3.644, 14.978)
(6;—8.) (-2.299, 12.444) (-3.126, 14.293)
(8,:—6) (-10.164, 5.490) (-11.978, 6.644)
(6,—65) (-14.781, -0.038)* (-16.960, 0.460)

* denotes the interval not containing zero.
Finally it should be remarked that the asymptotic confidence level of the TK-type PEB MCA
procedure can be handled in a way similar to Section 3.
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Appendix

Proof of Theorem 2.1 :

From the additivity of loss, it follows that the Bayes risk for the decision problem is minimized
by minimizing the subcomponent risks. It is easy to see that the posterior distribution of 8;—6;
is given by

(9;_ 9,') - (x;—x;)
V250

Let the posterior p.d.f. of 6;—8; be p;(A |y, s*). Then for the interval estimate [ay bs]
of 8;—6;, the expected subcomponent loss with respect to the posterior of 8,—0; can be obtained
as follows .

[ las bt Api(Aly, dA

=(bi,—a;,)+% [Z (@—MpiA ly, sz)dA+—IB— [ (A=bpi(A |y, $)dA

| Yy 32~t/- (A- 1)

By differentiating this expression with respect to @; we have

0

) .
“oas [ ai bs: A)pi(Aly, sz)dA=—1+§ [2 piA 1y, $DdA,

which becomes zero by (A.1) when
dij=xi_xj—\/§tf(a) Sos

A similar work for b; completes the proof.
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Proof of Lemma 3.1
Without loss of generality, V may be assumed to be maxi<<< | Zi—Z; | /'S where Z’s are

i.i.d. N(0, 1) and S° is the average of 7 i.7.d. X random variables independent of Z’s. Note
that

maxisiice | Zi—Z; | /S~ 20
bs

:{maxlsl_qg |Zi_Zjl —2a: _ Z(S—I)ak}/s. (A. 2)

by be

It follows from Gumbel(1947) that in (A.2),

(max | Z—Z;| —2a)./ b
1<i<i<k

P
has limiting distribution as £ — c with density g given by (3.2). Since S —> 1 as k —> « clearly,
P
it suffices to show that 2(S—1)a./ b > 0 as £ .

It follows from the law of the iterated logarithm and the assumptlon 0(—5) that

log log k

s=1+0(( )2) as k> a.s.,

which implies

log log &
S

S=1+0(( ¥2) 35 k> a.s..

Thus it can be shown that as k— «,
2(8—Da/be=0(1) a.s.,
which completes the proof.

Proof of Lemmma 3.2 :
(i) It is easy to see from the law of the iterated logarithm that as 2 — oo,

(n +¢) o1+ ((log log k)m)] s

o= oz[1+o<<k’—gi9§_’) v97 as. (a.3)

MSr=

Thus we have, as £ — o,

1 ¢ 1+0(( log log N
= (w0 11¥0(GF7 log log B7D |

log log %
(n+c) [1+O((og =)

x/z)] a.s. (A.4)
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(i) Since F>1 a.s. as k—> o by (i), it follows from (A.3) and (A.4) that as k—> o,

o2

o log log k
e [1+0((—~—E—')1/2)] a.s.,

where 52 is given by (2.7).
Also simple calculations show that as £ — oo,

2

o log log k
So = n+e [1+O<(—-T—)V2>] a.S..

Hence the result follows.
(jii) Since F>1 a.s. as k—> o by (i), we have as k—> o,

A 1 nooN_
G- @w=0-F— 5,577 )G »
log log % o
=0((—Z)") G as..
Then the result follows by noting that

1 1
max,_._. | =5 | =[2(2 log k)‘/2+o(1)](-n— + ’c—)‘/gc a.S.,

as k— o (see Serfling (1980), p.91).
(iv) ‘The result follows from Lemma 3.1 with a little algebra.



