• Title/Summary/Keyword: simulated wind loads

Search Result 66, Processing Time 0.016 seconds

Control of peak floor accelerations of buildings under wind loads using tuned mass damper

  • Acosta, Juan;Bojorquez, Eden;Bojorquez, Juan;Reyes-Salazar, Alfredo;Payan, Omar;Barraza, Manuel;Serrano, Juan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Due to the frequency and magnitude of some loads produced by gusts of turbulent wind, building floors can develop lateral displacements and significant accelerations which can produce strong inertial forces on structural, non-structural elements and occupants. A device that can help to reduce the floor accelerations is the well-known Tuned Mass Damper (TMD); however, nowadays there is no enough information about its capacity in order to dissipate energy of turbulent wind loads. For this reason, in this paper different buildings with and without TMD are modeled and dynamically analyzed under simulated wind loads in order to study the reduction of peak floor accelerations. The results indicate that peak floor accelerations can be reduced up to 40% when TMD are incorporated in the buildings, which demonstrated that the Tuned Mass Damper is an efficient device to reduce the wind effects on tall buildings.

A nondestructive method for controlling wind loads and wind-induced responses of wooden pagoda

  • LI, Yuhang;DENG, Yang;LI, Aiqun
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • High-rise wooden pagodas generate large displacement responses under wind action. It is necessary and wise to reduce the wind loads and wind-induced responses on the architectural heritage using artificial plants, which do not damage ancient architecture and increase greenery. This study calculates and analyzes the wind loads and wind-induced responses on the Yingxian Wooden Pagoda, in China, using artificial plants via the finite element analysis (FEA). A three-dimensional wind-loading field was simulated using a wind tunnel test. Wind loads and wind-induced responses, including the displacement and acceleration of the pagoda with and without artificial plants, were analyzed. In addition, three types of tree arrangements were discussed and analyzed using the score method. The results revealed that artificial plants can effectively control wind loads and wind-induced displacements, but the wind-induced accelerations are enlarged to some extent during the process. The height of the tree significantly affected the shelter effects of the structure. The distance of trees from the pagoda and arrangement width of the tree had less influence on shelter effects. This study extends the understanding of the nondestructive method based on artificial plants, for controlling the wind base loads and structural responses of wooden pagodas and preserving architectural heritage via FEA.

Generation of local wind pressure coefficients for the design of low building roofs

  • Kumar, K. Suresh;Stathopoulos, Ted
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.455-468
    • /
    • 2001
  • This paper presents recent research on the experimental evaluation of wind loads on low buildings and the recommendations provided in the form of traditional codification. These mainly include the wind loads on buildings with geometries different from those examined in previous studies. This is followed by the evaluation of simulated wind loads on low building roofs. The overall application of a recently proposed simulation methodology for codification purposes is discussed in detail. The traditional codification provides for a group of roof geometries a single peak design pressure coefficient for each roof zone considering a nominal worst-case scenario; this may often lead to uneconomical loads. Alternatively, the presented methodology is capable of providing peak pressure coefficients corresponding to specific roof geometries and according to risk levels; this can generate risk consistent and more economical design wind loads for specific roof configurations taking into account, for instance, directional design conditions and upstream roughnesses.

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel;Kozmar, Hrvoje;Pospisil, Stanislav;Machacek, Michael
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.471-485
    • /
    • 2021
  • Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

Estimation of peak wind response of building using regression analysis

  • Payan-Serrano, Omar;Bojorquez, Eden;Reyes-Salazar, Alfredo;Ruiz-Garcia, Jorge
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.129-137
    • /
    • 2019
  • The maximum along-wind displacement of a considerable amount of building under simulated wind loads is computed with the aim to produce a simple prediction model using multiple regression analysis with variables transformation. The Shinozuka and Newmark methods are used to simulate the turbulent wind and to calculate the dynamic response, respectively. In order to evaluate the prediction performance of the regression model with longer degree of determination, two complex structural models were analyzed dynamically. In addition, the prediction model proposed is used to estimate and compare the maximum response of two test buildings studied with wind loads by other authors. Finally, it was proved that the prediction model is reliable to estimate the maximum displacements of structures subjected to the wind loads.

Inverse active wind load inputs estimation of the multilayer shearing stress structure

  • Chen, Tsung-Chien;Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.19-33
    • /
    • 2008
  • This research investigates the adaptive input estimation method applied to the multilayer shearing stress structure. This method is to estimate the values of wind load inputs by analyzing the active reaction of the system. The Kalman filter without the input term and the adaptive weighted recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the adaptive weighted recursive least square estimator to estimate the wind load input over time. This combined method can effectively estimate the wind loads to the structure system to enhance the reliability of the system active performance analysis. The forms of the simulated inputs (loads) in this paper include the periodic sinusoidal wave, the decaying exponent, the random combination of the sinusoidal wave and the decaying exponent, etc. The active reaction computed plus the simulation error is regard as the simulated measurement and is applied to the input estimation algorithm to implement the numerical simulation of the inverse input estimation process. The availability and the precision of the input estimation method proposed in this research can be verified by comparing the actual value and the one obtained by numerical simulation.

Modeling wind load paths and sharing in a wood-frame building

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.177-194
    • /
    • 2019
  • While establishing adequate load paths in the light-frame wood structures is critical to maintain the overall structural integrity and avoid significant damage under extreme wind events, the understanding of the load paths is limited by the high redundant nature of this building type. The objective of the current study is to evaluate the system effects and investigate the load paths in the wood structures especially the older buildings for a better performance assessment of the existing building stock under high winds, which will provide guidance for building constructions in the future. This is done by developing building models with configurations that are suspicious to induce failure per post damage reconnaissance. The effect of each configuration to the structural integrity is evaluated by the first failure wind speed, amajor indicator beyond the linear to the nonlinear range. A 3D finite-element (FE) building model is adopted as a control case that is modeled using a validated methodology in a highly-detailed fashion where the nonlinearity of connections is explicitly simulated. This model is then altered systematically to analyze the effects of configuration variations in the model such as the gable end sheathing continuity and the gable end truss stiffness, etc. The resolution of the wind loads from scaled wind tunnel tests is also discussed by comparing the effects to wind loads derived from large-scale wind tests.

Behaviour of transmission line conductors under tornado wind

  • Hamada, Ahmed;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.369-391
    • /
    • 2016
  • Electricity is transmitted by transmission lines from the source of production to the distribution system and then to the end users. Failure of a transmission line can lead to devastating economic losses and to negative social consequences resulting from the interruption of electricity. A comprehensive in-house numerical model that combines the data of computational fluid dynamic simulations of tornado wind fields with three dimensional nonlinear structural analysis modelling of the transmission lines (conductors and ground-wire) is used in the current study. Many codes of practice recommend neglecting the tornado forces acting on the conductors and ground-wires because of the complexity in predicting the conductors' response to such loads. As such, real transmission line systems are numerically simulated and then analyzed with and without the inclusion of the lines to assess the effect of tornado loads acting on conductors on the overall response of transmission towers. In addition, the behaviour of the conductors under the most critical tornado configuration is described. The sensitivity of the lines' behaviour to the magnitude of tornado loading, the level of initial sag, the insulator's length, and lines self-weight is investigated. Based on the current study results, a recommendation is made to consider conductors and ground-wires in the analysis and design of transmission towers under the effect of tornado wind loads.

Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation

  • Lu, C.L.;Li, Q.S.;Huang, S.H.;Tuan, Alex Y.;Zhi, L.H.;Su, Sheng-chung
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.313-350
    • /
    • 2016
  • Taipei 101 Tower, which has 101 stories with height of 508 m, is located in Taipei where typhoons and earthquakes commonly occur. It is currently the second tallest building in the world. Therefore, the dynamic performance of the super-tall building under strong wind actions requires particular attentions. In this study, Large Eddy Simulation (LES) integrated with a new inflow turbulence generator and a new sub-grid scale (SGS) model was conducted to simulate the wind loads on the super-tall building. Three-dimensional finite element model of Taipei 101 Tower was established and used to evaluate the wind-induced responses of the high-rise structure based on the simulated wind forces. The numerical results were found to be consistent with those measured from a vibration monitoring system installed in the building. Furthermore, the equivalent static wind loads on the building, which were computed by the time-domain and frequency-domain analysis, respectively, were in satisfactory agreement with available wind tunnel testing results. It has been demonstrated through the validation studies that the numerical framework presented in this paper, including the recommended SGS model, the inflow turbulence generation technique and associated numerical treatments, is a useful tool for evaluation of the wind loads and wind-induced responses of tall buildings.