DOI QR코드

DOI QR Code

Inverse active wind load inputs estimation of the multilayer shearing stress structure

  • Chen, Tsung-Chien (Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University) ;
  • Lee, Ming-Hui (Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University)
  • Received : 2007.02.12
  • Accepted : 2008.01.24
  • Published : 2008.02.25

Abstract

This research investigates the adaptive input estimation method applied to the multilayer shearing stress structure. This method is to estimate the values of wind load inputs by analyzing the active reaction of the system. The Kalman filter without the input term and the adaptive weighted recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the adaptive weighted recursive least square estimator to estimate the wind load input over time. This combined method can effectively estimate the wind loads to the structure system to enhance the reliability of the system active performance analysis. The forms of the simulated inputs (loads) in this paper include the periodic sinusoidal wave, the decaying exponent, the random combination of the sinusoidal wave and the decaying exponent, etc. The active reaction computed plus the simulation error is regard as the simulated measurement and is applied to the input estimation algorithm to implement the numerical simulation of the inverse input estimation process. The availability and the precision of the input estimation method proposed in this research can be verified by comparing the actual value and the one obtained by numerical simulation.

Keywords

References

  1. Bartlett, F. D. J. and Flannelly, W. G. (1979), "Model verification of force determination for measuring vibratory forces", J. the American Helicopter Society., 24, 10-18. https://doi.org/10.4050/JAHS.24.10
  2. Bogler, P. L. (1987), "Tracking a maneuvering target using input estimation", IEEE Transactions on Aerospace and Electronic Systems., AES-23(3), 298-310. https://doi.org/10.1109/TAES.1987.310826
  3. Chan, Y. T. Hu, A. G. C. and Plant, J. B. (1979), "A Kalman filter based tracking scheme with input estimation", IEEE Transactions on Aerospace and Electronic Systems., AES-15(2), 237-244. https://doi.org/10.1109/TAES.1979.308710
  4. Chopra, A. K. (1995), Dynamics of Structures Theory and Applications to Earthquake Engineering, Prentice-Hall, Inc.
  5. Deng, S. and Heh, T. Y. (2006), "The study of structural system dynamic problems by recursive estimation method", Int. J. Adv. Manuf. Technol., 30, 195-202. https://doi.org/10.1007/s00170-005-0077-y
  6. Genaro, G. and Rade, D. A. (1998), "Input force identification in the time domain", Proceedings of the 15th International Modal Analysis Conference, Santa Barbara, California.
  7. Giansante, N., Jones, R. and Calapodas, N. J. (1982), "Determination of in-flight helicopter loads", J. the American Helicopter Society. 27, 58-64. https://doi.org/10.4050/JAHS.27.58
  8. Herlufsen, H. (1984), Dual Channel FFT Analysis part, B&K Technical Review.
  9. Hillary, B. and Ewins, D. J. (1984), "The use of strain gauges in force determination and frequency response function measurements", Proceedings of the 2nd International Modal Analysis Conference. Orlando, FL.
  10. Huang, C. H. (2001), "An inverse nonlinear force vibration problem of estimating the external forces in a damped system with time-dependent system parameters", J. Sound Vib., 242, 749-765. https://doi.org/10.1006/jsvi.2000.3196
  11. Inoue, H., Ikeda, N., Kishimto, K., Shibuya, T. and Koizumi, T. (1995), "Inverse analysis of the magnitude and direction of impact force", JSME Int. J Series A., 38, 84-91.
  12. Liu, J. J. Ma, C. K. Kung, I. C. and Lin, D. C. (2000), "Input force estimation of a cantilever plate by using a system", Comput. Methods Appl. Mech. Engrg., 190, 1309-1322. https://doi.org/10.1016/S0045-7825(99)00465-X
  13. Ma, C. K. and Ho, C. C. (2004), "An inverse method for the estimation of input forces acting on on-linear structural systems", J. Sound Vib., 275, 953-971. https://doi.org/10.1016/S0022-460X(03)00797-1
  14. Ma, C. K. Chang, J. M. and Lin, D. C. (2003), "Input forces estimation of beam structures by an inverse method", J Sound Vib., 259(2), 387-407. https://doi.org/10.1006/jsvi.2002.5334
  15. Okubo, N., Tanabe, S. and Tatsuno, T. (1985), "Identification of force generated by a machine under operating conditions", Proceedings of the 3rd International Modal Analysis Conference, Orlando, Florida, USA.
  16. Stevens, K. K. (1987), "Force identification problems - an overview", Proceedings of the 1987 SEM Spring Conference on Experimental Mechanics, Houston, Texas, USA, 838-844.
  17. Tuan, P. C. and Hou, W. T. (1998), "Adaptive robust weighting input estimation method for the 1-D inverse heat conduction problem", Numer Heat Transfer., 34, 439-456. https://doi.org/10.1080/10407799808915067
  18. Tuan, P. C. Lee, S. C. and Hou, W. T. (1997), "An efficient on-line thermal input estimation method using Kalman filter and recursive least square algorithm", Inverse Problem Eng., 5, 309-333. https://doi.org/10.1080/174159797088027665
  19. Wang, H. M. Chen, T. C. Tuan, P. C. and Den, S. G. (2005), "Adaptive-weighting input-estimation approach to nonlinear inverse heat-conduction problems", J. Thermophy. Heat Transfer., 19(2), 209-216. https://doi.org/10.2514/1.8720
  20. Wang, M. L. and Kreitinger, T. J. (1994), "Identification of force from response data of a nonlinear system", Soil Dyn. Earthq. Eng., 13, 267-280. https://doi.org/10.1016/0267-7261(94)90031-0

Cited by

  1. Intelligent fuzzy weighted input estimation method for the input force on the plate structure vol.34, pp.1, 2010, https://doi.org/10.12989/sem.2010.34.1.001
  2. Emerging issues and new frameworks for wind loading on structures in mixed climates vol.19, pp.3, 2014, https://doi.org/10.12989/was.2014.19.3.295
  3. Nonlinear structural system wind load input estimation using the extended inverse method vol.17, pp.4, 2013, https://doi.org/10.12989/was.2013.17.4.451
  4. INTELLIGENT FUZZY WEIGHTED INPUT ESTIMATION METHOD FOR THE DYNAMIC FORCE INPUTS OF A CANTILEVER BEAM MOUNTED WITH CONCENTRATED MASSES vol.04, pp.01, 2012, https://doi.org/10.1142/S1758825112001348
  5. Inverse Active Load Inputs Estimation of the 3D Spatial Truss Structure System vol.27, pp.04, 2011, https://doi.org/10.1017/jmech.2011.50
  6. Inverse active vibration force inputs estimation for a beam–machine system vol.43, pp.4, 2012, https://doi.org/10.1080/00207721.2010.521867
  7. Active control to reduce the horizontal seismic response of buildings taking into account the soil-structure interaction vol.42, 2012, https://doi.org/10.1016/j.soildyn.2012.06.018
  8. A procedure for in situ wind load reconstruction from structural response only based on field testing data vol.167, 2017, https://doi.org/10.1016/j.jweia.2017.04.009
  9. INVERSE DYNAMIC INPUT ESTIMATION OF A SEISMIC SOIL–STRUCTURE INTERACTION SYSTEM vol.06, pp.04, 2014, https://doi.org/10.1142/S1758825114500409
  10. Wind load Identification of a guyed mast inversely from full-scale response measurement vol.744, 2016, https://doi.org/10.1088/1742-6596/744/1/012192
  11. A novel intelligent fuzzy estimator for uniform load determination on a beam with varying boundary conditions vol.36, pp.3, 2013, https://doi.org/10.1080/02533839.2012.731854
  12. Intelligent fuzzy weighted input estimation method for the multi-story buildings with unknown ground motion acceleration vol.29, pp.10, 2009, https://doi.org/10.1016/j.soildyn.2009.05.006
  13. Statistical wind prediction and fatigue analysis for horizontal-axis wind turbine composite material blade under dynamic loads vol.9, pp.9, 2017, https://doi.org/10.1177/1687814017724088
  14. Characteristics of thunderstorms relevant to the wind loading of structures vol.20, pp.6, 2015, https://doi.org/10.12989/was.2015.20.6.763
  15. A Study on an Inverse Estimation Method for Solving Soil-Structure Interaction System vol.255-260, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.255-260.2891
  16. Estimation of structure system input force using the inverse fuzzy estimator vol.37, pp.4, 2008, https://doi.org/10.12989/sem.2011.37.4.351
  17. Beam-rotating machinery system active vibration control using a fuzzy input estimation method and LQG control technique combination vol.10, pp.1, 2008, https://doi.org/10.12989/sss.2012.10.1.015
  18. Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations vol.31, pp.2, 2020, https://doi.org/10.12989/was.2020.31.2.085