• Title/Summary/Keyword: shimmy

Search Result 19, Processing Time 0.153 seconds

Experimental Analysis for Steering Wheel Shimmy in Passenger Vehicle (승용차의 조타륜 쉬미에 대한 실험적 고찰)

  • 배병국;허필정;유병규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.439-443
    • /
    • 2001
  • The steering wheel vibrations such as shimmy, brake judder and shake are affected by the vibration characters of steering and suspension. For the analysis of shimmy, nonuniformities of tire can be considered the major sources. This study investigates unbalances and uniformities of tire in which the lateral force variation is highly correlated with shimmy. The hardness of suspension bushes can be modified to change the dynamic behavior of suspension that is effective to reduce the sensitivity of shimmy.

  • PDF

Vibration Analysis of Steering System in Commercial Vehicles (상용차 조향계의 진동해석)

  • Cho, B.K.;Ryu, G.H.;Kang, H.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.86-94
    • /
    • 1995
  • For a driving vehicle, a self-excited vibration of a pair of steerable wheels about their steering axis accompanied by tramp is called shimmy. Shimmy is caused by the coupling effects of the complicated actions of wheel and tire and the tramp motion of front wheel axle. Because front axle is no longer used on passenger cars shimmy occurring is not considerable. But in commercial vehicles using front wheel axle suspension system shimmy should be considered in design process. In this paper, the model closed to a practical vehicle was developed to analyze the shimmy of a commercial vehicle, and the effects of various design parameters to shimmy were observed by dynamic simulation with multibody dynamics program, DADS. The validity of developed model and analysis results were verified by practical vehicle experiments.

  • PDF

Nonlinear model based particle swarm optimization of PID shimmy damping control

  • Alaimo, Andrea;Milazzo, Alberto;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.211-224
    • /
    • 2016
  • The present study aims to investigate the shimmy stability behavior of a single wheeled nose landing gear system. The system is supposed to be equipped with an electromechanical actuator capable to control the shimmy vibrations. A Proportional-Integrative-Derivative (PID) controller, tuned by using the Particle Swarm Optimization (PSO) procedure, is here proposed to actively damp the shimmy vibration. Time-history results for some test cases are reported and commented. Stochastic analysis is last presented to assess the robustness of the control system.

Development of Performance Analysis Program for a Hydraulic Shimmy Damper of Steering System (조향계 유압 시미댐퍼의 성능해석 프로그램 개발)

  • 이재천;정용승;김진홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.174-183
    • /
    • 2004
  • A program to analyze the performance characteristics of a hydraulic shimmy damper for automotive steering system was developed in this study. Dimensionless mathematical equations of the dynamics of shimmy damper for forward and reverse fluid flows were derived respectively and incorporated into the Simulink models. The program was validated by comparing the results of simulation and experiments for various frequencies of upstream ripple pressures into the damper. Low-pass filter characteristics of the shimmy damper at reverse flow was demonstrated which means that the shimmy damper could alleviate the high speed ripple pressures induced by the unbalance oscillation of tire in vehicle driving. The parameter sensitivity analysis was also conducted to identify the dominant parameters for the damper performance.

The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters (타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play (유격을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Hwang, Jae-Up;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.973-978
    • /
    • 2010
  • In this paper, we studied the shimmy phenomena of an aircraft nose landing gear considering free-play. Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. This phenomena is caused by a couple of conditions such as low torsional stiffness of the strut, friction and free-play in the gear, wheel imbalance, or worn parts, and it may make an aircraft unstable. Free-play non-linearity is linearized by the described function for a stability analysis in a frequency domain, and time marching is performed using the fourth-order Runge-Kutta method. We performed the numerical simulation of the nose landing gear shimmy and investigated its linear and nonlinear characteristics. From the numerical results, we found limit-cycle-oscillations at the speed under linear shimmy speed for the case considering free-play and it can be concluded that the shimmy stability can be decreased by free-play.

Effect of Design Factors on the Vibration of the Steering Wheel of a Passenger Car (승용차 조향계 진동에 미치는 제인자)

  • 박철희;홍성철;송상기
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.5
    • /
    • pp.37-45
    • /
    • 1991
  • 일반 소형 승용차의 고속 주행시 발생하는 진동 중 조향휠의 원주방향의 진동인 shimmy 현상을 연구하였다. Shimmy 현상은 쾌적한 차량 설계단계에서 예측할 수 있고 그 원인을 추정할 수 있도록 조 향계의 모델링 및 이론해석을 하였으며 실험결과치와의 비교검토를 통하여 모델링에 대한 타당성을 검 증하였다. 검증된 모델링을 이용하여 조향계를 구성하는 각 부재의 감쇠, 강성, 타이어의 트레일 및 stabilizer bar 의 강성등의 변화가 조향휠 진동에 미치는 영향을 고찰하였다. 특히 shimmy 현상이 타이 어의 편마모등에 의한 unbalance mass에 얼마나 민감한가를 실험 및 이론적인 해석을 통하여 고찰하였다.

  • PDF

Shimmy Analysis Program Development of Steering System for a Passenger Car (승용차 조향계의 시미해석 프로그램 개발)

  • Park, S.K.;Song, S.K.;Lee, Y.H.;Song, K.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-70
    • /
    • 2000
  • The shimmy phenomenon, or the radial vibration of steering wheel, happens frequently at a high speed, complicated with suspension system, steering system, vehicle body, engine, transmission and tire. In this study, the suspension system and steering system are modeled by the reference of vehicle body design coordinates(T.L.H), the coordinate system usually used by passenger car maker. In addition, the theoretical results from numerical method have been investigated and compared with the experimental ones by the correlating analysis between the tire and sub-system. The steering and suspension system modeled for the numerical analysis are both independent type. This study developed an analysis program which could forecast the shimmy level in advance by the variation of properties in each system and the change in design of new model.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.

Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control

  • Alaimo, Andrea;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.459-473
    • /
    • 2020
  • The aircraft nose landing gear (NLG) can suffer of an unstable vibration called shimmy that is responsible of discomfort and of fatigue stress on the gear strut components. An adaptive controller is proposed in this paper to cope with the aforementioned problem. It is based on a method called Modified Simple Adaptive control (MSAC) which is able of governing the NLG motion by using a feedback signal that relies on just one output of the plant. The MSAC only asks for the passivity of the controlled plant. With this aim, a parallel feedforward compensator is employed in this work to let the system satisfies the almost strictly passivity (ASP) requirements. The nonlinear equations that govern the aircraft NLG shimmy vibration behavior are used to analyzed the controlled system transient response undergoing an initial disturbance and taking into account different taxiing speed values.