Abstract
A program to analyze the performance characteristics of a hydraulic shimmy damper for automotive steering system was developed in this study. Dimensionless mathematical equations of the dynamics of shimmy damper for forward and reverse fluid flows were derived respectively and incorporated into the Simulink models. The program was validated by comparing the results of simulation and experiments for various frequencies of upstream ripple pressures into the damper. Low-pass filter characteristics of the shimmy damper at reverse flow was demonstrated which means that the shimmy damper could alleviate the high speed ripple pressures induced by the unbalance oscillation of tire in vehicle driving. The parameter sensitivity analysis was also conducted to identify the dominant parameters for the damper performance.