DOI QR코드

DOI QR Code

Nonlinear model based particle swarm optimization of PID shimmy damping control

  • Received : 2015.08.22
  • Accepted : 2015.11.28
  • Published : 2016.04.25

Abstract

The present study aims to investigate the shimmy stability behavior of a single wheeled nose landing gear system. The system is supposed to be equipped with an electromechanical actuator capable to control the shimmy vibrations. A Proportional-Integrative-Derivative (PID) controller, tuned by using the Particle Swarm Optimization (PSO) procedure, is here proposed to actively damp the shimmy vibration. Time-history results for some test cases are reported and commented. Stochastic analysis is last presented to assess the robustness of the control system.

Keywords

References

  1. Ang, K.H., Chong, G. and Li, Y. (2005), "PID control system analysis, design, and technology", IEEE Tran. Control Syst. Tech., 13(4), 559-576. https://doi.org/10.1109/TCST.2005.847331
  2. Atabay, E. and Ozkol, I. (2014), "Application of a magnetorheological damper modeled using the currentdependent Bouc-Wen model for shimmy suppression in a torsional nose landing gear with and without freeplay", J. Vib. Control, 20(11), 1622-1644. https://doi.org/10.1177/1077546312468925
  3. Barmish, B.R. and Lagoa, C.M. (1997), "The uniform distribution: A rigorous justification for its use in robustness analysis", Math. Control, Signal. Syst., 10(3), 203-222. https://doi.org/10.1007/BF01211503
  4. Besselink, I.J.M. (2000), "Shimmy of aircraft main landing gear", Ph.D. Thesis, Delft University of Technology, Delft.
  5. Bonfe, M. (2011), "Discussion on: state feedback fuzzy adaptive control for active shimmy damping", Eur. J. Control, 17(4), 394-396. https://doi.org/10.1016/S0947-3580(11)70605-7
  6. European Aviation Safety Agency and Total Training Support Ltd. EASA and TTS (2010), Integrated training system: Module 11A, Volume 5, S.l., TTS Integrated Training System.
  7. Federal Aviation Administration, FAA (2012), AMT Airframe Handbook Volume 2 (FAA-H-8083-31), Aviation Supplies & Academics Inc., Newcastle, WA, U.S.
  8. Howcroft, C., Lowenberg, M., Neild, S., Krauskopf, B. and Coetzee, E. (2014), "Shimmy of an aircraft main landing gear with geometric coupling and mechanical freeplay", J. Comput. Nonlin. Dyn., ASME, 10(5), 051011. https://doi.org/10.1115/1.4028852
  9. Huynh, T.H., Pouly, G., Lauffenburger, J.P. and Basset, M. (2008), "Active shimmy damping using direct adaptive fuzzy control", Proceedings of the 17th IFAC World Congress, Seul, Korea, July.
  10. Moreland, W.J. (2012), "The story of shimmy", J. Aeronaut. Sci., 21 (12), 793-808. https://doi.org/10.2514/8.3227
  11. Pacejka, H. (2005), Tire and Vehicle Dynamics, Elsevier, Burlington, MA, USA
  12. Pouly, G., Huynh, T.H., Lauffenburger, J.P. and Basset, M. (2008), "Active shimmy damping using Fuzzy Adaptive output feedback control", Proceedings of 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008, IEEE, Hanoi, Vietnam, December.
  13. Pouly, G., Huynh, T.H., Lauffenburger, J.P. and Basset, M. (2011), "State feedback fuzzy adaptive control for active shimmy damping", Eur. J. Control, 17(4), 370-393. https://doi.org/10.3166/ejc.17.370-393
  14. Ray, L.R. and Stengel, R.F. (1992), "Stochastic measures of performance robustness in aircraft control systems", J. Guid. Control Dyn., 15(6), 1381-1387. https://doi.org/10.2514/3.11400
  15. Ray, L.R. and Stengel, R.F. (1993), "A Monte Carlo approach to the analysis of control system robustness", Automatica, 29(1), 229-236. https://doi.org/10.1016/0005-1098(93)90187-X
  16. Sateesh, B. and Maiti, D.K. (2009), "Non-linear analysis of a typical nose landing gear model with torsional free play", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(6), 627-641. https://doi.org/10.1243/09544100JAERO532
  17. Shi, Y. and Eberhart, R.C. (1999), "Empirical study of particle swarm optimization", Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, 3, 1945-1950.
  18. Stepan, G. (2002), "Appell-Gibbs equation for classical wheel shimmy-an energy view", J. Comput. Appl. Mech., 3(1), 85-92.
  19. Somieski, G. (1997), "Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods", Aerosp. Sci. Tech., 1(8), 545-555. https://doi.org/10.1016/S1270-9638(97)90003-1
  20. Takacs, D., Orosz, G. and Stepan, G. (2009), "Delay effects in shimmy dynamics of wheels with stretched string-like tyres", Eur. J. Mech. A/Solid., 28(3), 516-525. https://doi.org/10.1016/j.euromechsol.2008.11.007
  21. Thota, P., Krauskopf, B. and Lowenberg, M. (2009), "Interaction of torsion and lateral bending in aircraft nose landing gear shimmy", Nonlin. Dyn., 57(3), 455-467. https://doi.org/10.1007/s11071-008-9455-y
  22. Von Collani, E. and Drager, K. (2001), Binomial Distribution Handbook for Scientists and Engineers, Springer Science & Business Media.

Cited by

  1. Natural Computing Applied to the Underground System: A Synergistic Approach for Smart Cities vol.18, pp.12, 2018, https://doi.org/10.3390/s18124094
  2. An integrated particle swarm optimizer for optimization of truss structures with discrete variables vol.61, pp.3, 2017, https://doi.org/10.12989/sem.2017.61.3.359
  3. Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control vol.7, pp.5, 2016, https://doi.org/10.12989/aas.2020.7.5.459
  4. Weight effects on simple adaptive shimmy suppression system: a case study vol.1824, pp.1, 2021, https://doi.org/10.1088/1742-6596/1824/1/012014