• Title/Summary/Keyword: shear effect

Search Result 4,365, Processing Time 0.037 seconds

The Effect of Vinegar Concentration the Emulsion Stability of Mayonnaise Dressing (식초 첨가량에 따른 마요네즈 드레싱의 유화 안정성)

  • 양신철;한정열
    • Culinary science and hospitality research
    • /
    • v.8 no.3
    • /
    • pp.295-308
    • /
    • 2002
  • The effect of vinegar concentration (+30%, 0% and -30%) on the emulsion stability of mayonnaise dressing was studied by the measurement of theological test and sensory evaluation. The emulsion stability of mayonnaise dressing increased with increase in vinegar concentration. The results of steady shear theological test indicated that C sample of the highest vinegar concentration (+30%) exhibited higher emulsion stability than other samples. The dynamic shear datas were similar to steady shear theological data. The mayonnaise dressing samples showed time dependence, which was quantitatively described by the Weltman model. Parameters A and B indicated that the structure of C sample exhibited more stable than that of A (-30%) and B (0%) samples. The amount of oil separation was less than that of A and B samples. The results of sensory evaluation were similar to those of theological and emulsion tests.

  • PDF

Ultimate Transverse Bending Strength Analysis of a SWATH Ship (SWATH선의 최종 횡굽힘강도 해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

Effect of Extraction Time on the Rheological Properties of Sericin Solutions and Gels

  • Yoo, Young Jin;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.180-184
    • /
    • 2013
  • Recently, silk sericin has attracted the attention of researchers owing to its useful properties as a biomaterial including 1) good wound healing and cell activities, 2) fast gelation character, and 3) high water retention property. In the present study, silk sericin was prepared using different extraction times in hot water and the effect of extraction time on the rheological properties of sericin solutions and gels was examined. It was found that the production yield of sericin increased with extraction time. The shear viscosity of sericin solutions and gels decreased with increasing extraction time due to a decrease in sericin molecular weight. When the sericin solution transformed to a gel, the viscosity increased and the shear thinning behavior was more evident. In addition, the shear stress measurements indicated that the slip between the sericin samples and the measuring plate of the rheometer was increased by the gelation of sericin. The compression strength of sericin gel could be increased remarkably (by more than 100 fold) by preparation using the freezing and thawing method.

Analysis of RC beams subjected to shock loading using a modified fibre element formulation

  • Valipour, Hamid R.;Huynh, Luan;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.377-390
    • /
    • 2009
  • In this paper an improved one-dimensional frame element for modelling of reinforced concrete beams and columns subjected to impact is presented. The model is developed in the framework of a flexibility fibre element formulation that ignores the shear effect at material level. However, a simple shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and concrete. The capability of the formulation for estimating the element response history is demonstrated by some numerical examples and it is shown that the developed 1D element has the potential to be used for dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.

Seismic behavior of post-tensioned precast reinforced concrete beam-to-column connections

  • Cheng, Chin-Tung
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.525-544
    • /
    • 2008
  • In this research, the self-centering effect in precast and prestressed reinforced concrete structures was investigated experimentally. The reinforced concrete beams and columns were precast and connected by post-tensioning tendons passing through the center of the beams as well as the panel zone of the connections. Three beam-to-interior-column connections were constructed to investigate parameters such as beam to column interfaces (steel on steel or plastic on plastic), energy dissipating devices (unbonded buckling restrained steel bars or steel angles) and the spacing of hoops in the panel zone. In addition to the self-centering effect, the shear strength in the panel zone of interior column connections was experimentally and theoretically evaluated, since the panel zone designed by current code provisions may not be conservative enough to resist the panel shear increased by the post-tensioning force.

Effect of Roll Gap Geometry on the Evolution of Strain States and Textures during Asymmetrical Rolling in AA1050 (AA1050 판재의 비대칭 압연 시 변형률 상태와 집합조직 발달에 미치는 압연변형 형상의 영향)

  • Kang, H.G.;Nah, J.J.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.219-221
    • /
    • 2006
  • Asymmetrical rolling was performed by rolling AA 1050 sheets with different velocities of upper and lower rolls. In order to study the effect of roll gap geometry on the evolution of strain states and textures during asymmetrical rolling, the reduction per rolling pass was varied. After asymmetrical rolling, the outer thickness layers depicted shear textures and the center thickness layers displayed a random texture. With decreasing reduction per an asymmetrical rolling pass, the thickness layers depicting shear textures increases. The strain states associated with asymmetrical rolling were investigated by simulations with the finite element method (FEM).

  • PDF

Effects of Gradation on Dynamic properties of Sands (모래의 입도가 동적 특성에 미치는 영향)

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.7-16
    • /
    • 1987
  • The dynamic properties of soils are affected by parameters like, gradation characteristics, void ratio, confining pressure, etc. . This study mainly investigated experimentally the effect of gradation on the dynamic properties of sands with the effect of void ratio and confining pressure. Test results showed that shear modulus/damping ratio was increased/decreased with the decrease of void ratio and with the increase of confining pressure. When the fine content increased, shear modulus/damping ratio was decreased/increased. This study explained this phenomenon by the concept of the "effective number of contacts" and the "dead space".ot;dead space".uot;.

  • PDF

An Experimental Study on the Shear Buckling of a Composite Plate with Bead and Hole (비드와 원공을 갖는 복합재 평판의 전단 좌굴 실험에 관한 연구)

  • 임효식;김주언;황정선
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.146-154
    • /
    • 2000
  • Buckling behavior was studied for the square plate with bead and hole under shear load. Plates were made to examine the effect of bead and hole to the material, aluminum and composite, the effect of flange angle, bead height and bead radius of curvature. There was little difference between buckling loads obtained by the experiment and Rayleigh-Ritz method to the plate. Buckling load could be increased highly when stress concentration to the hole was dispersed effectively using flange. A well-designed plate using bead and flange showed 3 times as much as stiffness to the plate without bead and flange.

  • PDF

Experimental Study on the Effect of Particle Size Distribution of Soil to the Liquefaction Resistance Strength (입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구)

  • Choi, Mun-Gyu;Seo, Kyung-Bum;Park, Seong-Yong;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1126-1133
    • /
    • 2005
  • The effects of mean particle size and uniformity coefficient of dredged soils to the liquefaction resistance strength and dynamic characteristics are experimentally studied in this paper. Representative 4 mean particle sizes and 3 uniformity coefficients were selected and 12 representative particle size distribution curves which have different mean particle sizes and uniformity coefficients, were artificially manufactured using the real dredged river soil. Cyclic triaxial tests and torsional shear tests were carried out to analyze the effect of mean particle size and uniformity coefficient to the liquefaction resistance strength and dynamic characteristics of soils.

  • PDF

The effect of bond strength of longitudinal bars on shear strength of reinforced concrete beams (부착강도가 철근 콘크리트 보의 전단강도에 대한 영향)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.51-52
    • /
    • 2010
  • The effect of bond strength of longitudinal reinforcing bars on shear strength of reinforced concrete beams is investigated from the view point of arch and truss actions. Stress fields with bond allow us identify possible failure modes including bond failure of a deep beam as well as a slender beam. The slope angle of diagonal compression fields is interpreted as balanced failures of two components involved for shear transfer.

  • PDF