• 제목/요약/키워드: sensitivity design

검색결과 2,997건 처리시간 0.028초

지역(국가) 간 색상에 대한 인지 및 감성의 차에 대한 연구 (A Study on the Difference of Sensitivity and Understanding Between Countries)

  • 김철수;정도성;박영목;민규홍;김관배
    • 한국디자인학회:학술대회논문집
    • /
    • 한국디자인학회 1999년도 춘계 학술발표대회 논문집
    • /
    • pp.68-69
    • /
    • 1999
  • 본 연구는 다음과 같은 가정을 전제로 실시되었다. "디자인 중요한 요소인 색상에 대하여 지역간(문화간) 원색이라고 인식되는 색상이 다를 수 있으며 색상에 대한 이미지(감성)도 차이를 보인다". 즉 한국인이 생각하는 빨간색과 일본인이 생각하는 빨간색은 서로 다를 수 있으며 그에 대한 이미지도 다르다는 것이다. (중략)

  • PDF

매개화된 민감도 해석에 의한 PM MRI의 Pole Piece 형상 최적화 (Shape Optimization for Magnetic Pole Piece of PM MRI using Nonlinear Parameterized Sensitivity Analysis)

  • 류재섭;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.70-72
    • /
    • 2004
  • The ferromagnetic pole piece of permanent magnet assembly for magnetic resonance imaging(MRI) is optimally designed to get high homogenious magnetic field, taking into account the non-linearity of the magnetic materials. In the design, the pole face is kept smooth and axis-symmetric by using B-spline parameterization, and nonlinear design sensitivity analysis is used for search direction.

  • PDF

Robust Design of Reactor Power Control System with Genetic Algorithm-Applied Weighting Functions

  • Lee, Yoon-Joon;Cho, Kyung-Ho;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.353-363
    • /
    • 1998
  • The H$_{\infty}$ algorithms of the mixed weight sensitivity is used for the robust design of the reactor power control system. The mixed weight sensitivity method requires the selection of the proper weighting functions for the loop shaping in frequency domain. The complexity of the system equation and the non-convexity of the problem make it very difficult to determine the weighting functions. The genetic algorithm which is improved and hybridized with the simulated annealing is applied to determine the weighting functions. This approach permits an automatic calculation and the resultant system shows good robustness and performance.

  • PDF

전자기력에 대한 설계민감도 계산 및 위상 최적화 (Design Sensitivity Analysis and Topology Optimization for Electromagnetic Force)

  • 문희곤;왕세명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.708-710
    • /
    • 2003
  • This paper presents design sensitivity analysis for the electromagnetic force and torque obtained from Coulomb's virtual work method using the adjoint variable method. And virtual displacement field is calculated from a static structural analysis. Derived equations are verified by comparison with finite different method. And topology optimization for a c-core is given as a verification example.

  • PDF

자계-열계 시스템의 3차원 위상최적설계 (3-D Topology Optimization of Magneto-Thermal Systems)

  • 심호경;왕세명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.939-941
    • /
    • 2005
  • This research presents a 3D multi-objective approach regarding both magnetic and thermal characteristics associated with design of C-core actuator. The adjoint variable topology sensitivity equations are derived using the continuum method for three dimension. The sensitivity is verified using the Finite Difference Method(FDM). Convection interpolation function is proposed for density method of topologies such that convection term can be taken into consideration for practical design in the process of the optimization.

  • PDF

Design, analyses, and evaluation of a spiral TDR sensor with high spatial resolution

  • Gao, Quan;Wu, Guangxi;Yu, Xiong
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.683-699
    • /
    • 2015
  • Time Domain Reflectometry (TDR) has been extensively applied for various laboratory and field studies. Numerous different TDR probes are currently available for measuring soil moisture content and detecting interfaces (i.e., due to landslides or structural failure). This paper describes the development of an innovative spiral-shaped TDR probe that features much higher sensitivity and resolution in detecting interfaces than existing ones. Finite element method (FEM) simulations were conducted to assist the optimization of sensor design. The influence of factors such as wire interval spacing and wire diameter on the sensitivity of the spiral TDR probe were analyzed. A spiral TDR probe was fabricated based on the results of computer-assisted design. A laboratory experimental program was implemented to evaluate its performance. The results show that the spiral TDR sensor featured excellent performance in accurately detecting thin water level variations with high resolution, to the thickness as small as 0.06 cm. Compared with conventional straight TDR probe, the spiral TDR probe has 8 times the resolution in detecting the water level changes. It also achieved 3 times the sensitivity of straight TDR probe.

Cantilever beam vibration sensor based on the axial property of fiber Bragg grating

  • Casas-Ramos, Miguel A.;Sandoval-Romero, G.E.
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.625-631
    • /
    • 2017
  • In the fields of civil engineering and seismology, it is essential to detect and tracking the vibrations, and the fiber Bragg gratings (FBGs) are typically used as sensors to measure vibrations. Where, one of the most popular and detailed approaches to use FBGs as vibration sensors involves the use of cantilever beam designs, which adds a mass to measure low and moderate frequencies (from 20 Hz up to 1 kHz) with high sensitivities (greater than 10 pm/g). The design consists of a bending strain in the cantilever that is simultaneously transferred to the FBG, resulting in a shift in the wavelength that is proportional to the strain experienced by the cantilever. In this work, we present the experimental results of a vibration sensor design using a cantilever beam to generate an axial uniform strain in the FBG in-line with the vertical axis, which modifies the cantilever's natural frequency that allows the sensor to have a wide frequency broadband without losing sensitivity. This sensor achieved a sensitivity of about 339 pm/g and a natural frequency of 227.3 Hz. The presented design compared with the traditional cantilever beam-based FBG vibration sensors, has the advantages of a simple design for detection on vibration-sensitive structures and its physical parameters can be easily modified in order to satisfy the requirements of the desired vibration measurements.

Z-영역에서 입력성형기의 설계와 민감도 해석 (Design and Sensitivity Analysis of Input Shaping Filter in the Z-domain)

  • 박운환;이재원;임병덕
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1854-1862
    • /
    • 2000
  • Input shaping method is to convolute input shaper, which is sequence of impulses, with reference input command not to excite the natural frequency of system. To reduce residual vibration for the ch ange of frequency, the number of impulses should be increased. Until now, amplitudes and time interval of those has been searched from the derivative of residual vibration. However, if time interval of impulses is fixed as the half of vibration period of system, input shaper H(z) in z-domain becomes (I-pz-1)n/K in which increasing n is the mean that robustness for change of parameter is improved. Also, design of many types of input shapers in z-domain is very easy because sensitivity curve is displayed with $\mid$H(z)zn$\mid$$\times$100. In the z-domain, EI(Extra-Insensitive) input shaper could be designed without solving nonlinear simultaneous equations as design in continuous time domain. In addition to, the design possibility of input shaper for a damped system was shown.

의사변수법(擬似變數法)에 의한 유한차원(有限次元) 구조물(構造物)의 설계민감도(設計敏感度) 해석(解析) 및 최적화(最適化)에 관한 연구(硏究) (Design Sensitivity Analysis and Optimization of Finite Dimensional Structures by Adjoint Variable Method)

  • 서관세;변근주
    • 대한토목학회논문집
    • /
    • 제5권3호
    • /
    • pp.137-144
    • /
    • 1985
  • 본 연구에서는 구조물 최적 설계시 필수적인 설계민감도 해석을 의사변분법을 도입하여 유한차원 구조물에 적용함으로써 구조물 최적설계를 기존의 방법보다 훨씬 간편하게 할 수 있음을 보인다. 정하중하에서 제약조건의 주종을 이루고 있는 변위 및 응력의 제약조건에 대하여 설계민감도 해석 및 그 수치해를 구하며 나아가 최적화 알고리리즘을 사용하여 최적설계가 효율적으로 수행됨을 입증한다. 유한차원 구조물인 트러스의 적당한 경계조건, 하중조건 및 제약조건하에서 구조물의 무게를 최소화 시키는 최적설계 문제를 고려한다.

  • PDF

Sensitivity Analysis of Steering Wheel Return-ability at Low Speed

  • Cho, HyeonSeok;Lee, ByungRim;Chang, SeHyun;Park, YoungDae;Kim, MinJun;Hwang, SangWoo
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.167-178
    • /
    • 2017
  • The steering wheel of a vehicle has a typical characteristic of automatically returning to its neutral state when the driver releases it. Steering returnability originated from the tire forces and kingpin moments. It is proportional to the reaction torque that is generated through the rack and column, which are dependent on suspension and steering geometry. It is also important to accurately predict and design it because steering returnability is related to steering performance. In this study, a detailed multibody dynamics model of a vehicle was designed by using ADAMS/Car and simulated for steering returnability. In addition, a tolerance analysis of the chassis system in terms of part dimension and properties has been performed in order to minimize the design parameters. The sensitivity of the selected design parameters was then analyzed via Design of Experiments(DOE). As a result, we were able to obtain the main parameters through a contribution analysis. It can be used to predict steering returnability and improve its performance, which is represented by the angle of restoration and laterality.