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Abstract

The H.. algorithms of the mixed weight sensitivity is used for the robust design of the reactor

power control system. The mixed weight sensitivity method requires the selection of the proper

weighting functions for the loop shaping in frequency domain. The complexity of the system

equation and the non-convexity of the problem make it very difficult to determine the weighting

functions. The genetic algorithm which is improved and hybridized with the simulated

annealing is applied to determine the weighting functions. This approach permits an automatic

calculation and the resultant system shows good robustness and performance.

1. Introduction

In the control system design, the most important
thing is to model the plant which is to be
controlled. But it is almost impossible to model
the plant exactly. The plant modeling includes an
inevitable linearization of the non-linearity as well
as the approximations in the mathematical
description of the plant. In addition the designed
system is subject to change due to the operating
conditions, controller set point drift, system
degradation, and so on.

The actual system should work as intended under
the real circumstances even though it is designed
Therefore, the
ultimate purpose of the control system design is to

on the basis of inexact plant.

maintain the robustness rather than the stability[1].
The system robustness is defined as the
performance and stability of the system for the
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the
uncertainties[2]. This robustness problem,

family of the plants exposed to
particularly for MIMO (multi-input multi- ocutput)
systems has been one of main issues in recent
years, and many methods are developed for the
robust design. Among them the H. paradigm
provides the synthetic method in which the size of
the uncertainty is measured quantitatively by the
infinity norm of the system[3]. However, the
design process is not so easy although this
method, which has a solid mathematical theory,
It

requires that the system should be in the H.,

has been proved to be a useful approach.

space, that is, in the space of stability and
properness. Further, since the H.. control is a
non-convexing problem, it is difficult to determine
the optimal controller. All these properties result
in the messy mathematical processes and many

iterations are required. The H. control may be
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regarded as an optimization process in the
frequency domain. This optimization is directly
related to the loop shaping which has been known
even from the era of classical control{4]. The
concept of loop shaping vields another variation of
the H.. control, say, the mixed weight sensitivity
method[5]. In this method, the robust design
problem resolves itself to the determination of
proper frequency-dependent weighting functions.
But there is no canonical method in selection of
the weighting functions. The controller design
begins with the guess of reasonable but arbitrary
weighting functions, and if the designed controller
does not give a plausible result, the overall design
is to be iterated with another set of weighting
functions.

This motivates us to develope a new method to
determine the weighting functions automatically by
use of the genetic algorithm[6). Since the genetic
algorithm is intrinsically a stochastic searching
method, it can be used as an efficient tool for the
non-convexing problem such as the robust design.
Once the cost function is given, the algorithm
finds the optimal results without designer’s
interference, and guarantees the best solution
under the frame of pre-determined cost functions.

2. Model Uncertainties and H. Control

All the modeled plants and systems have
uncertainties. Some of these uncertainties come
from the mathematical description of the real
plant. The mathematical modeling accompanies
various linearizations and simplifications somewhat
apart from the real ones. Even if the plant is
modeled exactly, it is exposed to the varying
operating conditions, and the system properties
are subject to change due to the component
aging.

For an example, the nuclear reactor plant
dynamics are described by the reactor power

dependent 5th order linear state variable equations
as

x = A(P)x + B(P)u, y = C(P)x + D{P)u (1)

where P is the reactor power, and the state vector
x consists of the variations of power, precursor
density, fuel temperature, coolant temperature and
external reactivity. The input u and output y are
control rod velocity and reactor power,
respectively. The details are fully described in
previous studies[7],[8], and the limitations are
discussed in Ref.[9]. The model of Eq.(1) has many
uncertainties. It employs the simplified point
kinetics equation and single lumped energy
balance equation. The modeling includes the
linearization with the assumption of small
perturbations from the steady state. In addition,
the system matrices are function of material
properties, which again depend on the operating
conditions.

Usually the control system design is based on the
models of plants or processes which are to be
controlled. Therefore, if the modeled plant is
different from the actual plant, the designed
system may not have the intended stability and
performance. The Wiener-Hopf-Kalman (WHK)
LQR control is a typical example of this
discrepancy between the theory and the reality.
Since the WHK optimal control theory itself is
perfect and the design procedure is once-through
and simple, it was expected to be a reliable design
tool. But it turned out to be almost useless in the
industrial process plant. The WHK has the
presumptions that the process plant be exactly
described with no uncertainty and the stochastic
properties of the noises be known. This is
impossible or uneconomic except for the some
special cases such as spaceship and small scale
electro mechanical system.

The control system should take account of the
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uncertainties in advance, and the designed system
should work as intended under the real situation.
Therefore it can be said that the purpose of the
control system design is the robustness rather than
the stability. The H. optimal control technique
provides an efficient method which can deal with
the modeling errors and external disturbances.
The major target of the H.. design is to determine
the transfer function of the overall system
including the controller. That is, the H. control
can be regarded as an optimization in the space of
transfer function with the performance function of
H.. norm of the transter function.

The robust problem can be divided into two
categories of the robust analysis and the robust
synthesis. The analysis problem is to find out the
MSM (multivariable stability margin) of the system
seen by the uncertainties. In other words, it is to
find the maximum permissible uncertainties for the
system stability. The MSM, K, (T,1,1) is defined as

s 1
Km(Tylul (] w)) - #A(Tylul (] CU)) (2)

= inf ,{ o(4(j @) | det(I— T, G )4 w)) =0}

where p, = structured singular value (SSV) with
the uncertainty, ¢ = singular value, 4(jw)=
frequency dependent uncertainty, T, (jo) =
frequency dependent system transfer function with
input and output vector of u; and y;, respectively.
The robust analysis can be thought as the MIMO
version of the Nyquist small gain theorem. It says

that the perturbed system “(‘I‘jlm is stable if and

onlyif 14(Gw) ) =<1 and K (T (i) > 1for all
frequencies where T(jw) is the transfer function
of an unperturbed nominal plant.

On the other hand, the robust synthesis problem
is to find out the controller K(s}) which makes the
structured singular value, x,(T (jw)), conform to
the desirable loop shaping. The concept of loop
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Fig. 1. Canonical Two-Port Model

shaping has been known from the classical PID,
and all the modern algorithms such as H,
LQG/LTR or H. can be regarded as related to the
loop shaping. Among these, the H,, is the most
direct and reliable method for the controller design
which satisfies the design specification given in
terms of the singular value loop shaping.

The robust problem could be configured into the
canonical two-port model as in Fig. 1. The system
equation poses as

=P ¥ 3)
where @=(x vy, vi)7, T=(x u; uy)", x = state

variable vector, u and y = system input and output
vector, respectively. And

A Bl BZ Pll P12
P(S): Cl D” D12 = .
Cy Dy Dy Py Py

Then the synthesis is to find the stable feedback
control law of uy(s)=K(s)y,(s)which minimizes
the infinite norm of Ty, The mathematical
algorithm includes the relations between the input
vector and output vector by use of an observer,
which yields two Riccati equations of the control
law and the observer law. One of important
characteristics of the H.. control is that the cost
function T, is of all pass, which means that the
singular value is unity for all frequencies. This
implies that it is always possible to control the
loop shape with some proper frequency-
dependent weighting functions in the H.
paradigm.
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However the H.. has some disadvantages. Since
the problem is to solve a set of coupled Riccati
equations, the system equation itself should satisfy
several mathematical conditions. Some of these
conditions are : 1) both of the control law Riccati
solution, P, and the observer Riccati solution, S,
should be positive-definite, 2) spectral radius of
(PS) should be positive, 3) the rank condition
between the input/output and packed matrix order
should be satisfied, 4) D1, of the packed matrix
should be sufficiently small for the system roll-off
at high frequencies. The most difficult one is the
rank condition. If the system does not meet this
condition, dummy variables should be added or the
overall system should be reconfigured. Another
drawback of the H.. is the non-convexity. Hence
it is very difficult to obtain the globally optimal
solution. This implies physically that there might
be another controller which is better than the
designed one.

3. Mixed Weight Sensitivity Method

Figure 2 shows the unity feedback system with
plant disturbance and sensor noise. By defining
the sensitivity as S = 1/{1+GK) and the
complementary sensitivity as T = GK/(1+GK), the
system output and the control input are put into

vo(8)=T(—n)+Sd, u(s)= —GI-(r—d —n) (@)

Usually the noise has high frequencies and the
disturbance has low frequencies. Therefore, it is
desirable to decrease the magnitude of T in the
higher frequency region to eliminate the noise
effects. Similarly, the magnitude of S should be
small in the lower frequency region to remove the
disturbance effects. This is the concept of the loop
shaping and the robust control design problem is
to achieve the desirable loop shaping with the
predetermined ideal loop shapes of W, and W,

ld
r
K(s) | G(s) Ly vy,

Controller Plant
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Fig. 2. Feedback System with Noise and
Disturbance

Fig. 3. Loop Shaping with Weighting Functions

This is described in Fig. 3. The target of the
design is to find such S and T which satisfy the
conditions of a(S(jw)< | Wil| and o(T(jw))
CIwst) .

Figure 4 shows the feedback system perturbed by
disturbance and noise. In this configuration, all
the disturbances acting on the plant are treated as
one multiplicative uncertainty. The weighting
functions of W, and W, are applied to the error
signal and plant output signal, respectively.

The overall system is a MIMO system and the
transfer function between the input vector u and
output vector y is

W,S -W,S
T,=Yt-= ]
v AW, T —W,T
5
WS (o)
e
W, T

where u = (u, u)", v = (e, v)". The problem is to
decrease the infinite norm of T,, to minimize the
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system responses to the noise and disturbance
inputs, and the mixed weight sensitivity method
boils down to the selection of weighting functions.
The calculational procedure of the mixed
sensitivity method is simpler than that of the u
analysis method which uses the heawy calculation
of the structured singular value. The result of the
mixed sensitivity gives a good approximation to
the # analysis with the maximum deviation of 3dB.

The feedback system with the weighting
functions of Fig. 4 is recast into the two-port
model as described in Fig. 5.

In this figure, the noise signal is replaced by the
command signal u; to make the tracking system as
is the reactor power control system. An additional
weighting function W, are applied to the plant
input signal to regulate the control effort. Even if
it is not necessary to regulate the control effort,
this weighting function is necessary for the rank
condition. Then the system is expressed in the
following SIMO (Single Input Multi-Output)
transfer function vector.

p- e va) yuzlyﬂ)T =(W,S W;R W,T)7,

K __
1+KG

(6)
R=

The calculational procedure is outlined in Figure
6. The most important and the most difficult step
is the selection of weighting functions. It is a
common practice to use a first order lead or lag as
a weighting function. A higher order function can

Eﬂ
Vs vs vs

ol [u] Gls)

Augmented Plant P(s)
uz

K(s) [ &—

Controller

Fig. 5. Weight Augmented Two Port Model

be used for the more exact result, of course, but it
increases the order of the packed matrix, and may
breach the conditions of the H. controller
existence. But even for the case of a first order
lag or lead, it is very difficult to determine its
parameters, particularly when the frequency
characteristics of the system such as bandwidth,
breakpoint frequency and saturated limits are not
known. Although the selected weighting functions
satisfy the mathematical conditions, the designed
system may differ from the intended system with
respect to performance or stability. Then the
whole calculation starts again from the first step
with new weight functions.

The real problem lies in the fact that the problem
is non-convexing. Because of this non-convexity,
it is difficult to relate the performance
improvement with the gradients, or rate of
changes, of weighting function parameters.
Hence the weighting function selection heavily
depends on the designer’s discretion. The
calculation should be iterated until the ‘plausible’
results are obtained. But it can not be assured that
the designed controller is optimized globally. The
controller thus obtained is optimized locally.

Figure 7 shows the results of this conventional
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and the controller is
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@
approach. The reactor power control system is E 1.5}
configured as in Fig. 5. The system is in the -g' 1.0L
steady state of 90% rated power. The situation is e
such that a step command input signal acts on the 2 0.5
system to increase the power from 90% to 100%. @ 00|
It is required that the maximum power during the 0 2 20 80 30100
transient should not exceed 103% and the rod Time. sec

speed be less than 2cm/sec. The purpose is to
design the robust controller K(s) which satisfies
these constraints. The reactor plant G(s) of 90%
is obtained from Eq.(1). With numerous trial and
errors, the weighting functions are determined as

Fig. 7-2. Rod Velocity - Conventional Method

Figure 7 shows the reasonable results. There is
no overshooting during the transient and the
maximum rod speed is less than 2cm/sec. The
W&g:ﬁ:—ﬁf&&%, Wy(s)=5, maximum rod acceleration is 0.76cm/sec?.
Although no formal constraint is set forth on the

Wai(s) ==L s +0.06238 (7)
3 2.4 0.06175 rod acceleration, a large acceleration is not
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desirable because of the possible problems in
mechanical components.

It is found that the calculational algorithm is very
sensitive to the parameters of the weighting
functions. A small change of the weighting
function parameter may result in a quite different
result, and it is almost impossible to find out the
best solution.

4. Application of GA to Weighting
Functions

The difficulties of the optimization arising from
the non-convexity can be eliminated by use of the
genetic algorithm (GA). The GA is based on the
survival-of-the fittest principle in nature. In terms
of calculation, the GA maps a problem onto a
subset of candidate solution which is called an
individual. Each solution is associated with a
fitness value to measure how good it is. By using
three major operators of reproduction, crossover
and mutation, it searches the optimal solution of
the given problem. Since the GA does not
depend on the coupling between the parameters,
it provides more flexibility in dealing with the
concerned system. Throughout the repeated
searches, the attributes of the candidate solutions

will improve toward an unknown optimal one, and

some of these solutions will converge to the
globally best one. However, the GA has several
shortcomings. For example, its convergence rate
is slow at the final stage and may wander around the
true solution. And the detail algorithm may be
inefficient depending on the problem characteristics.

To eliminate these generic demerits of the GA,
the simulated annealing (SA) is employed into the
GA along with the improvements of the GA
algorithms. And this scheme is named the hybrid
Modified GA Simulated Annealing (MGA-SA)[10].
The major features of the MGA are as below.

1) exponential-wise representation of the
parameters : This permits the efficient search
when there exists little information on the
parameter range, or when it ranges widely.

2) modified crossover scheme : A linear
inter/extrapolation is used instead of the bit-wise
cross over to avoid the hamming cliff effects.

3) ancestor pool and periodic reinitialization :
To reduce the run time, fitness values of the visited
solutions are saved in a storage named ancestor
pool, and is reused when the same candidates are
generated in the future generation. And by the
periodic reinitialization from this pool, the
searching process becomes more stable and less
divergent.

The MGA is a multi point searching scheme and
is efficient for the global search in the earlier
searching stage. But it tends to wander around
the true solution at the final stage. The SA, on
the other hand, is a one point searching scheme
and suitable to locate the final solution{11].
Therefore the schemes are made in such a way
that the MGA is switched to the SA to locate the
final solution after a solution of pre-specified
quality is obtained (hybrid MGA-SA).

The MGA-SA is applied to determine the
weighting functions of Fig 5. The reactor plant of
90% is used as before. The weighting functions
W, and W3 are assumed as a first order lead/lag



360 dJ. Korean Nuclear Society, Volume 30, No. 4, August 1998

circuit, respectively, and W, as a constant.

1+b;s
Wl(s)=71 1+a:S y W2(5)=72, .

1+ b3S (9)
Wi(s)= T T+ ays

Then the robust problem is to determine seven
parameters of [y, 7, 73, a,, by, a3, by ] which
yield the best fitness. The multiplication of the
reactor power deviation, rod speed and
acceleration are referred for the fitness. The
system fitness, or cost function, can be defined
arbitrarily at designer’ s convenience, which
permits the flexibility and practicability. This is due
to the independency of the GA cost from the
governing equations of the system.
In terms of the GA, the problem is set forth as

Find C= [Cl' dl' Cy, dz, oo C7y d7]
fitness(X) = 1/ Cost( X)

To Maximize

Subject to
Cost( X) = 35, y(B =y, I+u(R*a(B)

X=[rn. 7, 7 a5 by, a; by]l=X(x))

(final time, T;)
(sampling period, AT)

N:

x;=c; - €%, i=1,2 .. .1
1.00<¢;<<9.9, =1, 2, .. .7
~4<d;<5, i=1,2, .. T (10)

All the searching module of the hybrid MGA-SA
are implemented in the C language. The H.
algorithms written in MATLAB[12] are called to
calculate the cost through the interfacing
programs. The limits of the overshooting and the
rod speed of the FSAR are applied to evaluate the
cost function. And the maximum rod acceleration
is limited to 0.5cm/sec?. After 50 generations in

MGA, the SA finally locates the weighting

functions as follows.

Wye) =1L Wy (s)=0.08,

_ _1+4.7s
Wi(s)=0.00367 1 5°g71s (11)

And the controller is calculated as
___0.061465°+25.845° +440.9s*
K(®) = 0T 426,25+ 9601 5° 4 3.01 X 10°5"

+1313s3 +822.9s*+42.31s
F2.0Ix10°s°+3323s%+ 154 s +0.003421) (12)

Figures 8-1 through 8-3 show the time
responses of the reactor power, rod speed and rod
acceleration, respectively, of the resultant system.
The reactor power converges to the full power
more rapidly than that of Fig. 7-1. However, the
rapid system requires a larger control effort, which
is confirmed by comparison with Fig. 7. The rod
speed is larger than the previous result. But the
acceleration, whose maximum value is 0.44
cm/sec?, is much smaller, which means the
milder actuator operation.

The convergence of the parameters of [7,, 7. 73,
a;, by, a3, by] as the generation proceeds is
described in Fig. 9. As shown in the figure, there
are three notable changes. The parameters
change rapidly at the initial stage which reflects
the efficiency of the GA in multi-point searching.
Over the several generations, they show small
variation. Around the 12th generation, they
change to new values owing to mutation
algorithm. At the 36th generation they are
converged to the final global solution. To describe
the betterment qualitatively, the relation between
the improvement and generation is presented in
Fig. 10. The improvement is defined as the ratio
of fitness to the reference. And the fitness of Fig.
7 is used as the reference for the comparison.
The overall trend matches the parameter
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convergence of Fig. 9. The improvement
increases rapidly at the initial stage, and increases

further with the parameter changes. This illustrates
1or the fact the GA search proceeds in the optimal
direction owing to the heredity of gocd attributes.
The controller of Eq.(12) is of 7th order, and the
08y coefficients have wide ranges. This means that
the controller is impractical in implementation,

and the setting problem may arise. Hence the

controller order is reduced to the 4th order by

I L A I

20 40 60 80 100 truncation of the insignificant Hankel singular

Rod Acceleration, cm/sec”2

Time. sec values. The reduced controller is

Fig. 8-3. Rod Acceleration - by GA Method 0 Q6253+Q.9252+Q.73S+Q.Q4
K=" 00055 +17.1s7+2.96s +0.14 (13
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Table 1. System Margins
Power Level, Gain Margin, Phase Margin

©0) {dB) (degree)
90 97.0 713
80 96.9 685
70 96.9 685
96.8 65.2
96.5 57.1
96.4 52.0
9.3 459
20 96.2 387
10 9.1 299

The frequency responses of Eq.(12) and (13) are
exactly the same each other. The designed
controller has the gain margin of 97 dB, and
phase margin of 71.3°.

The reactor plant is the function of the power.
As the power decreases, the dominant pole
approaches to the origin, and the reactor becomes
more difficult to control. To estimate the
robustness, the margins of the system which
consists of the power dependent reactor plant and
the controller are calculated as in Table 1. The
controller is designed with the 90% reactor plant.
Hence the reactor plants of other than 90% can
be regarded as perturbed plants from the
controller’s view point and the larger the power
differs from the 90%, the larger the degree of
perturbation or uncertainty becomes. Table 1
shows that the designed controller provides the
system with a sufficient robustness. The gain
margins are almost constant and even the largely
perturbed plant of 20% rated reactor has the
phase margin of about 30°. Also the simulations
show that all the perturbed plants up to 20%
satisfy the requirements on the overshooting, rod
speed and acceleration.

5. Conclusions

The control system design starts from the plant

modeling. But the modeled plant is different
from the real one due to the simplification,
These
uncertainties should be considered to keep the

operating conditions and so on.

robustness so that the designed system works as
intended in the actual situation. The H.. control
is an useful method, and one of its variation, the
mixed weight sensitivity, is employed for the
robust design of the reactor power control
system. In the frame of mixed weight sensitivity,
the design problem is to determine the proper
weighting functions which give the desirable
system loop shaping. But because of the
complexity of the system equations and the non-
convexity of the problem, it is very difficult to
determine the proper weighting functions, and
the design may be finished without knowing the
existence of the better solution.

The GA algorithm which is modified for
improvement in algorithms and hybridized with
the SA is employed to eliminate this problem.
The GA searches the best solution throughout
the global solution space without trapping in the
local solutions. The GA also provide the
automatic design procedure, which removes the
laborious and blind-wise iteration. The designed
system has sufficient margins for the robustness,
and the simulation shows good performances.

The design parameter of the GA-applied
approach is a cost function. Depending on how
to define the cost function, the results may be
different. Once the problem-specific cost
function is defined, the GA applied mixed weight
sensitivity method results in the best solution in
an automatic procedure.
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