• Title/Summary/Keyword: secondary batteries

Search Result 396, Processing Time 0.025 seconds

Electrochemical Properties of Spinel $LiMn_2O_4$ Synthesized at Various Heat Treatment for Lithium lon Battery (리튬 이온 전지용 스피넬 $LiMn_2O_4$의 열처리 온도에 따른 전기 화학적 특성)

  • Han, Tae-Hee;Min, Hyung-Sik;Han, Byoung-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.179-184
    • /
    • 1999
  • In the past ten years, $LiMn_2O_4$-based spinels have been extensively studied as positive electrode materials for lithium-ion batteries. To improve the cycle performance of spinel $LiMn_2O_4$ as the cathode of 4V class lithium secondary batteries, spinel phases $LiMn_2O_4$ were prepared at various temperatures ranging form 600-900$^{\cire}C$ in air. The results showed that charge.dischare capacity of $LiMn_2O_4$ varied at 1st temperature from $200^{\circ}C to 600^{\circ}C$ increase with increasing temperature. $LiMn_2O_4$ synthesized at 2nd temperature $750^{\circ}C$excellent charge.discharge capacity, efficiency and cyclability compared to the samplesynthesized different temperatures. The value of lst charge.discharge capacity was 121mAh/g, 118mAh/g, Also, the efficiency value was about 97%.

  • PDF

Synthesis of Li2PtO3 Thin Film Electrode by an Electrostatic Spray Deposition Technique

  • Oh, Heung-Min;Kim, Ji-Young;Lee, Kyung-Keun;Chung, Kyung-Yoon;Kim, Kwang-Bum
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • $Li_2PtO_3$ thin film electrodes, which might be possible candidate for the cathode materials for implantable batteries, were synthesized using an electrostatic spray deposition (ESD) technique onto a platinum foil substrate. Single phase $Li_2PtO_3$with a structure similar to layered $LiCoO_2$ structure were synthesized by spraying a precursor solution of $CH_3CO_2Li2H_2O$ in ethanol onto a Pt substrate at temperatures ranging from 200 to $400^{\circ}C$ followed by annealing at above $600^{\circ}C$. Lithium carbonate was the only major phase at temperatures up to $500^{\circ}C$. The X-ray diffraction (XRD) peaks of the Pt foil substrate and lithium carbonate disappeared at temperatures >$600^{\circ}C$. The volumetric capacity of the $Li_2PtO_3$ thin film synthesized using the ESD technique was approximately 817 mAh/$cm^3$, which exceeded that of $LiCoO_2$ (711 mAh/$cm^3$).

Electrochemical Properties of LiFePO4 Cathode Materials for Lithium Polymer Batteries (리튬폴리머전지용 정극활물질 LiFePO4의 전기화학적 특성)

  • Kong Ming-Zhe;Kim Hyun-Soo;Gu Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.519-523
    • /
    • 2006
  • $LiFePO_4$ has been received attention as a potential cathode material for the lithium secondary batteries. In our study, $LiFePO_4$ cathode active materials were synthesized by a solid-state reaction. It was modified by coating $TiO_2$ and carbon in order to enhance cyclic performance and electronic conductivity. $TiO_2$ and carbon coatings on $LiFePO_4$ materials enhanced the electronic conductivity and its charge/discharge capacity. For lithium polymer battery applications, $LiFePO_4$/solid polymer electrolyte (SPE)/Li and $LiFePO_{4}-TiO_{2}/SPE/Li$ cells were characterized by a cyclic voltammetry and charge/discharge cycling. The electrode with $LiFePO_{4}-carbon-TiO_{2}$ in PVDF-PC-EC-$LiClO_{4}$ electrolyte showed promising capacity of above 100 mAh/g at 1C rate.

A Study on Active Balancing Methods by Battery Stack Power Recovery

  • Kyung-Ho Shin;Myeong-Jin Song;Woo-Joon Kim;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1089-1098
    • /
    • 2024
  • Recently, the demand for energy storage has increased, serial cell configurations are commonly used for high-capacity secondary batteries. Initially, when identical cells are configured in series, the battery cells operate without voltage differences. However, over time, voltage imbalances occur due to differences in the environmental and physical properties of the cells. In addition, the unique characteristics of cells change during charging and discharging, which greatly affects to the degradation of battery efficiency and performance. Various cell balancing techniques have been proposed to achieve high efficiency and performance in battery. This paper proposes a minimum voltage selective balancing topology based on a flyback converter for module balancing of batteries based on active cell balancing techniques. In the proposed topology, the output voltage of each battery is shared through a single transformer, the energy from the converter's primary side is transferred to the battery modules with the minimum voltage. The proposed module balancing circuit can be easily applied to the battery reuse industry. The proposed minimum voltage battery module selective balancing topology was verified through PSIM simulations and experiments.

A Study on the Preparation of Rare Earth Oxide Powder for Rare Earth Precipitates Recovered from Spent Ni-MH Batteries (폐니켈수소전지로부터 회수된 희토류 침전물의 희토류 산화물 분말 제조에 대한 연구)

  • Kim, Dae-Weon;Ahn, Nak-Kyoon;Shim, Hyun-Woo;Park, Kyung-Soo;Choi, Hee-Lack
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • We report a method for preparing rare earth oxides ($Re_xO_y$) from the recycling process for spent Ni-metal hydride (Ni-MH) batteries. This process first involves a leaching of spent Ni-MH powders with sulfuric acid at $90^{\circ}C$, resulting in rare earth precipitates (i.e., $NaRE(SO_4)_2{\cdot}H_2O$, RE = La, Ce, Nd), which are converted into rare earth oxides via two different approaches: i) simple heat treatment in air, and ii) metathesis reaction with NaOH at $70^{\circ}C$. Not only the morphological features but also the crystallographic structures of all products are systematically investigated using field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD); their thermal behaviors are also analyzed. In particular, XRD results show that some of the rare earth precipitates are converted into oxide form (such as $La_2O_3$, $Ce_2O_3$, and $Nd_2O_3$) with heat treatment at $1200^{\circ}C$; however, secondary peaks are also observed. On the other hand, rare earth oxides, RExOy can be successfully obtained after metathesis of rare earth precipitates, followed by heat treatment at $1000^{\circ}C$ in air, along with a change of crystallographic structures, i.e., $NaRE(SO_4)_2{\cdot}H_2O{\rightarrow}RE(OH)_3{\rightarrow}RE_xO_y$.

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode (고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구)

  • Kim, Jiyong;Tron, Artur V.;Yim, Taeeun;Mun, Junyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.

A study on recovery of rare earth oxide powders from waste NiMH batteries (폐니켈수소전지로부터 희토류 산화물 분말의 회수에 대한 연구)

  • Ahn, Nak-Kyoon;Kim, Dae-Weon;Shim, Hyun-Woo;Park, Jae-Hun;Park, Jeung-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.85-90
    • /
    • 2018
  • For the recovering rare earths in the spent nickel-metal hydride batteries, 10 M NaOH is added to the solution leached with sulfuric acid. The rare earth powders were precipitated at rate of 98 % at the condition of pH 2.0 or less. The recovered rare earth complex precipitate increased the leaching rate to nitric acid by heat treatment at $800^{\circ}C$ for 4 hours. Subsequently secondary precipitation was performed by adding oxalic acid to the solution in which the rare earth complex precipitate was dissolved. The re-precipitated rare earth powders were converted into oxide form through heat treatment at $800^{\circ}C$ for 4 hours with purity of 99.5 %.

Fabrication of Li2MnSiO4 Cathode Thin Films by RF Sputtering for Thin Film Li-ion Secondary Batteries and Their Electrochemical Properties (RF 스퍼터법을 이용한 Li2MnSiO4 리튬 이차전지 양극활물질 박막 제조 및 전기화학적 특성)

  • Chae, Suman;Shim, Joongpyo;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.447-453
    • /
    • 2017
  • In this study, $Li_2MnSiO_4$ cathode material and LiPON solid electrolyte were manufactured into thin films, and the possibility of their use in thin-film batteries was researched. When the RTP treatment was performed after $Li_2MnSiO_4$ cathode thin-film deposition on the SUS substrate by a sputtering method, a ${\beta}-Li_2MnSiO_4$ cathode thin film was successfully manufactured. The LiPON solid electrolyte was prepared by a reactive sputtering method using a $Li_3PO_4$ target and $N_2$ gas, and a homogeneous and flat thin film was deposited on a $Li_2MnSiO_4$ cathode thin film. In order to evaluate the electrochemical properties of the $Li_2MnSiO_4$ cathode thin films, coin cells using only a liquid electrolyte were prepared and the charge/discharge test was conducted. As a result, the amorphous thin film of RTP treated at $600^{\circ}C$ showed the highest initial discharge capacity of about $60{\mu}Ah/cm^2$. In cases of coin cells using liquid/solid double electrolyte, the discharge capacities of the $Li_2MnSiO_4$ cathode thin films were comparable to those without solid LiPON electrolyte. It was revealed that $Li_2MnSiO_4$ cathode thin films with LiPON solid electrolyte were applicable in thin film batteries.

Electrochemical Capacitors (전기화학 커패시터)

  • Kim, Jong-Huy
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • In general, the battery and the(electric) condenser are pictured as electrical energy storage devices. Although there were lots of inventions and utilizations of morden conveniences according to enormous growth of the science and technologies after the Industrial Revolution, a speed of technology development on these devices being closely used in civilized human lives and many electric or electronic systems as a core component are relatively slower to the other fields of technologies. Nevertheless, based on a remarkable progress of the material science and technologies for the last ten years, a new type of electrical energy storage device so called as 'electrochemical capacitors' are being developed and used practically. The electrochemical capacitors exhibit their own characteristics of much enhanced capacitance over the conventional condensers and also distinctively exhibit a longer lift time and higher power capability that the nickel hydrogen batteries and secondary batteries such as lithium ion and polymer batteries does not show up so for. Hence, in this paper, it is intended to introduce a fundamental understanding and updated technology trends on the electrochemical capacitors.

Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries

  • Lee, Jeong Beom;Chae, Oh. B.;Chae, Seulki;Ryu, Ji Heon;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.306-315
    • /
    • 2016
  • Amorphous vanadium titanates (aVTOs) are examined for use as a negative electrode in lithium-ion batteries. These amorphous mixed oxides are synthesized in nanosized particles (<100 nm) and flocculated to form secondary particles. The $V^{5+}$ ions in aVTO are found to occupy tetrahedral sites, whereas the $Ti^{4+}$ ions show fivefold coordination. Both are uniformly dispersed at the atomic scale in the amorphous oxide matrix, which has abundant structural defects. The first reversible capacity of an aVTO electrode ($295mAhg^{-1}$) is larger than that observed for a physically mixed electrode (1:2 $aV_2O_5$ | $aTiO_2$, $245mAhg^{-1}$). The discrepancy seems to be due to the unique four-coordinated $V^{5+}$ ions in aVTO, which either are more electron-accepting or generate more structural defects that serve as $Li^+$ storage sites. Coin-type Li/aVTO cells show a large irreversible capacity in the first cycle. When they are prepared under nitrogen (aVTO-N), the population of surface hydroxyl groups is greatly reduced. These groups irreversibly produce highly resistive inorganic compounds (LiOH and $Li_2O$), leading to increased irreversible capacity and electrode resistance. As a result, the material prepared under nitrogen shows higher Coulombic efficiency and rate capability.