DOI QR코드

DOI QR Code

Synthesis of Li2PtO3 Thin Film Electrode by an Electrostatic Spray Deposition Technique

  • Oh, Heung-Min (Department of Material Science and Engineering, Yonsei University) ;
  • Kim, Ji-Young (Department of Material Science and Engineering, Yonsei University) ;
  • Lee, Kyung-Keun (Department of Material Science and Engineering, Yonsei University) ;
  • Chung, Kyung-Yoon (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Kim, Kwang-Bum (Department of Material Science and Engineering, Yonsei University)
  • Received : 2010.09.07
  • Accepted : 2010.09.24
  • Published : 2010.09.30

Abstract

$Li_2PtO_3$ thin film electrodes, which might be possible candidate for the cathode materials for implantable batteries, were synthesized using an electrostatic spray deposition (ESD) technique onto a platinum foil substrate. Single phase $Li_2PtO_3$with a structure similar to layered $LiCoO_2$ structure were synthesized by spraying a precursor solution of $CH_3CO_2Li2H_2O$ in ethanol onto a Pt substrate at temperatures ranging from 200 to $400^{\circ}C$ followed by annealing at above $600^{\circ}C$. Lithium carbonate was the only major phase at temperatures up to $500^{\circ}C$. The X-ray diffraction (XRD) peaks of the Pt foil substrate and lithium carbonate disappeared at temperatures >$600^{\circ}C$. The volumetric capacity of the $Li_2PtO_3$ thin film synthesized using the ESD technique was approximately 817 mAh/$cm^3$, which exceeded that of $LiCoO_2$ (711 mAh/$cm^3$).

Keywords

References

  1. K. Asakura, H. Arai, S. Okada, S. Tobishima, and J. Yamaki, Denki Kagaku 66, 221 (1998).
  2. S. Okada, J. Yamaki, K. Asakura, H.i Ohtsuka, H. Arai, S. Tobishima, and Y. Sakurai, Electrochim. Acta 45, 329 (1999). https://doi.org/10.1016/S0013-4686(99)00214-5
  3. K. Asakura, S. Okada, H. Arai, S. Tobishima, and Y. Sakurai, J. Power Sources 81-82, 338 (1999).
  4. J.L. Hodeau, M. Marezio, A. Santoro, and R.S. Roth, J. Solid State Chem. 45, 170 (1982). https://doi.org/10.1016/0022-4596(82)90273-0
  5. W.-S. Yoon, S.-H. Ban, K.-K. Lee, K.-B. Kim, M.-G. Kim, and J.-M. Lee, J. Power Sources 97-98, 282 (2001). https://doi.org/10.1016/S0378-7753(01)00514-6
  6. K.Y. Chung and K.-B. Kim, J. Electrochem. Soc. 149, A79 (2002). https://doi.org/10.1149/1.1426396
  7. I.-H. Kim and K.-B. Kim, Electrochem. Solid-State Lett. 4, A62 (2001). https://doi.org/10.1149/1.1359956
  8. K.-W. Nam and K.-B. Kim, Electrochemistry 69, 467 (2001).
  9. C. Chen, E.M. Kelder, and P.J.J.M. van der Put, J. Schoonman, J. Mater. Chem. 6, 765 (1996). https://doi.org/10.1039/jm9960600765
  10. K. Yamada, N. Sato, T. Fujino, C.G. Lee, I. Uchida, and J.R. Selman, J. Solid State Electrochem. 3, 148 (1999). https://doi.org/10.1007/s100080050141
  11. M.-K. Kim, K.-S. Park, J.-T. Son, J.-G. Kim, H.-T. Chung, and H.-G. Kim, Solid State Ionics 152-153, 267 (2002). https://doi.org/10.1016/S0167-2738(02)00309-0

Cited by

  1. Effects of transition metal doping and surface treatment to improve the electrochemical performance of Li2MnO3 vol.30, pp.3, 2013, https://doi.org/10.1007/s10832-012-9778-4