DOI QR코드

DOI QR Code

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode

고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구

  • Kim, Jiyong (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Tron, Artur V. (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Yim, Taeeun (Advanced Batteries Research Center, KETI) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
  • 김지용 (인천대학교 에너지화학공학과) ;
  • ;
  • 임태은 (전자부품연구원) ;
  • 문준영 (인천대학교 에너지화학공학과)
  • Received : 2015.03.31
  • Accepted : 2015.04.04
  • Published : 2015.05.31

Abstract

We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.

상온 이온성 액체인 propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI)를 리튬이차전지 전해질 용매로 사용 시 PMPyr-TFSI 내 수분 및 브롬 불순물이 전지의 성능에 미치는 영향을 연구하였다. 고전압 양극 물질인 $LiNi_{0.5}Mn_{1.5}O_4$ 스피넬 구조 양극을 이용한 반쪽 전지의 전해질로 PMPyr-TFSI를 사용 하는데 있어, PMPyr-TFSI의 수분 함유량을 각각 12, 77, 1060 ppm으로 제어하고 전압 곡선 개형 및 쿨롱 효율 거동 추적을 통해 PMPyr-TFSI 수분량이 전지 성능에 부정적인 영향을 미치는 것을 구체적으로 확인하였다. 또한, PMPyr-TFSI 전해질 내의 브롬 이온 불순물 양 제어를 통하여, 전지 내에서 브롬 이온 불순물과 관련한 전기화학 부반응을 찾아 내었다. 이들 할로겐 불순물에 의한 초기 전지 쿨롱 효율저하는 눈에 띠었으나, 수명 저하에는 큰 변화가 없음을 확인하였다.

Keywords

References

  1. Y. Baba, S. Okada, and J. Yamaki, 'Thermal stability of $LixCoO_2$ cathode for lithium ion battery' Solid State Ionics, 148, 311 (2002). https://doi.org/10.1016/S0167-2738(02)00067-X
  2. M. Egashira, M. Tanaka-Nakagawa, I. Watanabe, S. Okada, and J. Yamaki, 'Charge-discharge and high temperature reaction of $LiCoO_2$ in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation' J. Power Sources, 160, 1387 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.015
  3. S. Li, X. Ai, J. Feng, Y. Cao, and H. Yang, 'Diphenylamine: A safety electrolyte additive for reversible overcharge protection of 3.6V-class lithium ion batteries' J. Power Sources, 184, 553 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.041
  4. N. Alias, and A. A. Mohamad, 'Advances of aqueous rechargeable lithium-ion battery: A review' J. Power Sources, 274, 237 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.009
  5. K. Xu, 'Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries' Chem. Rev., 104, 4303 (2004). https://doi.org/10.1021/cr030203g
  6. J. Zhang, J. Wang, J. Yang, and Y. Nuli, 'Artificial Interface Deriving from Sacrificial Tris(trimethylsilyl) phosphate Additive for Lithium Rich Cathode Materials' Electrochim. Acta, 117, 99 (2014). https://doi.org/10.1016/j.electacta.2013.11.024
  7. P. Barpanda, S.-I. Nishimura, and A. Yamada, 'High-Voltage Pyrophosphate Cathodes' Adv. Energy Mater., 2, 841 (2012). https://doi.org/10.1002/aenm.201100772
  8. E. Cha, J. Mun, E. R. Cho, T. Yim, Y. G. Kim, S. M. Oh, S. A. Lim, and J. W. Lim, 'The corrosion study of Al current collector in phosphonium ionic liquid as solvent for lithium ion battery' J. Korean Electrochem. Soc., 14, 152 (2011). https://doi.org/10.5229/JKES.2011.14.3.152
  9. J. Mun, T. Yim, J. H. Park, J. H. Ryu, S. Y. Lee, Y. G. Kim, and S. M. Oh, 'Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of $LiCoO_2$ for advanced, safe lithium-ion batteries' Sci. Rep., 4, 5802 (2014). https://doi.org/10.1038/srep05802
  10. T. Yim, H. Y. Lee, H. J. Kim, J. Mun, S. Kim, S. M. Oh, and Y. G. Kim, 'Synthesis and Properties of Pyrrolidinium and Piperidinium Bis (trifluoromethanesulfonyl) imide Ionic Liquids with Allyl Substituents' Bull. Korean Chem. Soc., 28, 1567 (2007). https://doi.org/10.5012/bkcs.2007.28.9.1567
  11. J. Mun, T. Yim, K. Park, J. H. Ryu, Y. G. Kim, and S. M. Oh, 'Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature' J. Electrochem. Soc., 158, A453 (2011). https://doi.org/10.1149/1.3560205
  12. J. Mun, Y. S. Jung, T. Yim, H. Y. Lee, H.-J. Kim, Y. G. Kim, and S. M. Oh, 'Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode' J. Power Sources, 194, 1068 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.048
  13. E. Cho, J. Mun, O. B. Chae, O. M. Kwon, H.-T. Kim, J. H. Ryu, Y. G. Kim, and S. M. Oh, 'Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries' Electrochem. Commun., 22, 1 (2012). https://doi.org/10.1016/j.elecom.2012.05.018
  14. E. Markevich, V. Baranchugov, G. Salitra, D. Aurbach, and M. A. Schmidt, 'Behavior of Graphite Electrodes in Solutions Based on Ionic Liquids in In Situ Raman Studies' J. Electrochem. Soc., 155, A132 (2008). https://doi.org/10.1149/1.2811897
  15. X. W. Gao, C. Q. Feng, S. L. Chou, J. Z. Wang, J. Z. Sun, M. Forsyth, D. R. MacFarlane, and H. K. Liu, 'LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte' Electrochim. Acta 101, 151 (2013). https://doi.org/10.1016/j.electacta.2012.10.156
  16. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, N. Terada, P. Charest, A. Guerfi, and K. Zaghib, 'Compatibility of N-Methyl-N-propylpyrrolidinium Cation Room-Temperature Ionic Liquid Electrolytes and Graphite Electrodes' J. Phys. Chem. C, 112, 16708 (2008). https://doi.org/10.1021/jp805403e
  17. G. H. Min, T. Yim, Y. L. Hyun, H. J. Kim, J. Mun, S. Kim, S. M. Oh, and G. K. Young, 'Synthesis and physicochemical properties of ionic liquids: 1-Alkenyl-2,3-dimethylimidazolium tetrafluoroborates' Bull. Korean Chem. Soc., 28, 1562 (2007). https://doi.org/10.5012/bkcs.2007.28.9.1562
  18. J. Mun, S. Kim, T. Yim, J. H. Ryu, Y. G. Kim, and S. M. Oh, 'Comparative Study on Surface Films from Ionic Liquids Containing Saturated and Unsaturated Substituent for $LiCoO_2$' J. Electrochem. Soc., 157, A136 (2010). https://doi.org/10.1149/1.3265476
  19. T. Yim, C. Y. Choi, J. Mun, S. Oh, and Y. G. Kim, 'Synthesis and Properties of Acyclic Ammonium-based Ionic Liquids with Allyl Substituents as Electrolytes' Molecules, 14, 1840 (2009). https://doi.org/10.3390/molecules14051840

Cited by

  1. Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries vol.19, pp.4, 2016, https://doi.org/10.5229/JKES.2016.19.4.123
  2. Electrochemical Properties of Poly(Styrenesulfonate)-Carbon Composite Anode for Organic Rechargeable Battery vol.19, pp.4, 2016, https://doi.org/10.5229/JKES.2016.19.4.129