• 제목/요약/키워드: second-order differential equations.

검색결과 201건 처리시간 0.022초

TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

  • Pak, Hee-Chul
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.559-568
    • /
    • 2003
  • We introduce the notion of two-scale convergence for partial differential equations with random coefficients that gives a very efficient way of finding homogenized differential equations with random coefficients. For an application, we find the homogenized matrices for linear second order elliptic equations with random coefficients. We suggest a natural way of finding the two-scale limit of second order equations by considering the flux term.

GENERALIZED SECOND-ORDER DIFFERENTIAL EQUATIONS WITH TWO-POINT BOUNDARY CONDITIONS

  • Kim, Young Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제26권3호
    • /
    • pp.157-175
    • /
    • 2019
  • In this paper we define higher-order Stieltjes derivatives, and using Schaefer's fixed point theorem we investigate the existence of solutions for a class of differential equations involving second-order Stieltjes derivatives with two-point boundary conditions. The equations include ordinary and impulsive differential equations, and difference equations.

OSCILLATIONS OF SOLUTIONS OF SECOND ORDER QUASILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

  • Jin, Chuhua;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.1-16
    • /
    • 2007
  • Some Kamenev-type oscillation criteria are obtained for a second order quasilinear damped differential equation with impulses. These criteria generalize and improve some well-known results for second order differential equations with land without impulses. In addition, new oscillation criteria are also obtained to generalize and improve known results. Two examples of applications are given to illustrate the theory.

Oscillation of Second Order Nonlinear Elliptic Differential Equations

  • Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.65-77
    • /
    • 2006
  • By using general means, some oscillation criteria for second order nonlinear elliptic differential equation with damping $$\sum_{i,j=1}^{N}D_i[a_{ij}(x)D_iy]+\sum_{i=1}^{N}b_i(x)D_iy+p(x)f(y)=0$$ are obtained. These criteria are of a high degree of generality and extend the oscillation theorems for second order linear ordinary differential equations due to Kamenev, Philos and Wong.

  • PDF

INTERVAL OSCILLATION THEOREMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS

  • Bin, Zheng
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.581-589
    • /
    • 2009
  • In this paper, we are concerned with a class of nonlinear second-order differential equations with a nonlinear damping term and forcing term: $$(r(t)k_1(x(t),x'(t)))'+p(t)k_2(x(t),x'(t))x'(t)+q(t)f(x(t))=0$$. Passage to more general class of equations allows us to remove a restrictive condition usually imposed on the nonlinearity. And, as a consequence, our results apply to wider classes of nonlinear differential equations. Some illustrative examples are considered.

  • PDF

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권4호
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay;Saini, Manisha
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.229-241
    • /
    • 2020
  • For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.

OSCILLATORY PROPERTY OF SOLUTIONS FOR A CLASS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH PERTURBATION

  • Zhang, Quanxin;Qiu, Fang;Gao, Li
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.883-892
    • /
    • 2010
  • This paper is concerned with oscillation property of solutions of a class of second order nonlinear differential equations with perturbation. Four new theorems of oscillation property are established. These results develop and generalize the known results. Among these theorems, two theorems in the front develop the results by Yan J(Proc Amer Math Soc, 1986, 98: 276-282), and the last two theorems in this paper are completely new for the second order linear differential equations.