• 제목/요약/키워드: second order elliptic differential equations

검색결과 8건 처리시간 0.021초

TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

  • Pak, Hee-Chul
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.559-568
    • /
    • 2003
  • We introduce the notion of two-scale convergence for partial differential equations with random coefficients that gives a very efficient way of finding homogenized differential equations with random coefficients. For an application, we find the homogenized matrices for linear second order elliptic equations with random coefficients. We suggest a natural way of finding the two-scale limit of second order equations by considering the flux term.

Oscillation of Second Order Nonlinear Elliptic Differential Equations

  • Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.65-77
    • /
    • 2006
  • By using general means, some oscillation criteria for second order nonlinear elliptic differential equation with damping $$\sum_{i,j=1}^{N}D_i[a_{ij}(x)D_iy]+\sum_{i=1}^{N}b_i(x)D_iy+p(x)f(y)=0$$ are obtained. These criteria are of a high degree of generality and extend the oscillation theorems for second order linear ordinary differential equations due to Kamenev, Philos and Wong.

  • PDF

Oscillation of Certain Second Order Damped Quasilinear Elliptic Equations via the Weighted Averages

  • Xia, Yong;Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • 제47권2호
    • /
    • pp.191-202
    • /
    • 2007
  • By using the weighted averaging techniques, we establish oscillation criteria for the second order damped quasilinear elliptic differential equation $$\sum_{i,j=1}^{N}D_i(a_{ij}(x){\parallel}Dy{\parallel}^{p-2}D_jy)+{\langle}b(x),\;{\parallel}Dy{\parallel}^{p-2}Dy{\rangle}+c(x)f(y)=0,\;p>1$$. The obtained theorems include and improve some existing ones for the undamped halflinear partial differential equation and the semilinear elliptic equation.

  • PDF

ANNULUS CRITERIA FOR OSCILLATION OF SECOND ORDER DAMPED ELLIPTIC EQUATIONS

  • Xu, Zhiting
    • 대한수학회지
    • /
    • 제47권6호
    • /
    • pp.1183-1196
    • /
    • 2010
  • Some annulus oscillation criteria are established for the second order damped elliptic differential equation $$\sum\limits_{i,j=1}^N D_i[a_{ij}(x)D_jy]+\sum\limits_{i=1}^Nb_i(x)D_iy+C(x,y)=0$$ under quite general assumption that they are based on the information only on a sequence of annuluses of $\Omega(r_0)$ rather than on the whole exterior domain $\Omega(r_0)$. Our results are extensions of those due to Kong for ordinary differential equations. In particular, the results obtained here can be applied to the extreme case such as ${\int}_{\Omega(r0)}c(x)dx=-\infty$.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • 호남수학학술지
    • /
    • 제37권3호
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

농업시스템응용플랫폼을 이용한 2계 편미분 방정식의 해석 (Numerical Solution of Second Order Linear Partial Differential Equations using Agricultural Systems Application Platform)

  • 이성용;김태곤;서교;한이철;이제명;이호재;이정재
    • 한국농공학회논문집
    • /
    • 제58권1호
    • /
    • pp.81-90
    • /
    • 2016
  • The Agricultural Systems Application Platform (ASAP) provides bottom-up modelling and simulation environment for agricultural engineer. The purpose of this study is to expand usability of the ASAP to the second order partial differential equations: elliptic equations, parabolic equations, and hyperbolic equations. The ASAP is a general-purpose simulation tool which express natural phenomenon with capsulized independent components to simplify implementation and maintenance. To use the ASAP in continuous problems, it is necessary to solve partial differential equations. This study shows usage of the ASAP in elliptic problem, parabolic problem, and hyperbolic problem, and solves of static heat problem, heat transfer problem, and wave problem as examples. The example problems are solved with the ASAP and Finite Difference method (FDM) for verification. The ASAP shows identical results to FDM. These applications are useful to simulate the engineering problem including equilibrium, diffusion and wave problem.

고속 최소자승 점별계산법을 이용한 멀티 스케일 문제의 해석 (FCM for the Multi-Scale Problems)

  • 김도완;김용식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.599-603
    • /
    • 2002
  • We propose a new meshfree method to be called the fast moving least square reproducing kernel collocation method(FCM). This methodology is composed of the fast moving least square reproducing kernel(FMLSRK) approximation and the point collocation scheme. Using point collocation makes the meshfree method really come true. In this paper, FCM Is shown to be a good method at least to calculate the numerical solutions governed by second order elliptic partial differential equations with geometric singularity or geometric multi-scales. To treat such problems, we use the concept of variable dilation parameter.

  • PDF

Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.361-371
    • /
    • 2020
  • Exact solution for nonlinear behavior of clamped-clamped functionally graded (FG) buckled beams is presented. The effective material properties are considered to vary along the thickness direction according to exponential-law form. The in-plane inertia and damping are neglected, and hence the governing equations are reduced to a single nonlinear fourth-order partial-integral-differential equation. The von Kármán geometric nonlinearity has been considered in the formulation. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. Based on the mode of the corresponding linear problem, which readily satisfy the boundary conditions, the frequencies for the nonlinear problem are obtained using the Jacobi elliptic functions. The effects of various parameters such as the Young's modulus ratio, the beam slenderness ratio, the vibration amplitude and the magnitude of axial load on the nonlinear behavior are examined.