Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No: 11267/01/2019.
References
- Abdelghany, S.M., Ewis, K.M., Mahmoud, A.A. and Nassar, M.M. (2015), "Dynamic response of non-uniform beam subjected to moving load and resting on nonlinear viscoelastic foundation", Aust. J. Basic Appl. Sci., 4(3), 192-199. https://doi.org/10.1016/j.bjbas.2015.05.007
- Addou, F.Y. Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347
- Ali, G.A, Mahmoud, P. and Mohammad, A. (2018), "Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory", Smart Struct. Syst., Int. J., 22(11), 105-120. https://doi.org/10.12989/sss.2018.22.1.105
- Ansari, M., Esmailzadeh, E. and Younesian, D. (2011), "Frequency analysis of finite beams on nonlinear Kelvin-Voight foundation under moving loads", J. Sound Vib., 330(7), 1455-1471. https://doi.org/10.1016/j.jsv.2010.10.005
- Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surfaceelasticity theory", Thin Wall. Struct., 93, 169-176. https://doi.org/10.1016/j.tws.2015.03.013
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply-supported edges", Mater. Des., 28, 1651-1656. https://doi.org/10.1016/j. matdes.2006.02.007
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
- Barari, A., Omidvar, M., Abdoul, R.G. and Ganji, D.D. (2008), "Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations", Acta. Appl. Math., 104, 161-171. https://doi.org/10.1007/s10440-008-9248-9
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., Int. J., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103
- Belbachir, N., Draich, K., Bousahla, A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., Int. J., 33(1), 913-924. https://doi.org/10.12989/scs.2019.33.1.081
- Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
- Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
- Bodaghi, M., Damanpack, A.R., Aghdam, M.M. and Shakeri, M. (2012), "Non-linear active control of FG beams in thermal environments subjected to blast loads with integrated FGP sensor/actuator layers", Compos. Struct., 94(12), 3612-3623. https://doi.org/10.1016/j.compstruct.2012.06.001
- Bodaghi, M., Damanpack, A.R., Aghdam, M.M. and Shakeri, M. (2014), "Geometrically non-linear transient thermo-elastic response of FG beams integrated with a pair of FG piezoelectric sensors", Compos. Struct., 107, 48-59. https://doi.org/10.1016/j.compstruct.2013.07.045
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189
- Byrd, M.D. and Friedman, P.F. (1971), Handbook of elliptic integrals for engineers and physicists, Springer, Berlin.
-
Damanpack, A.R., Bodaghi, M., Ghassemi, H. and Sayehbani, M., (2013a), "
$^2$ Boundary element method applied to the Bending Analysis of Thin Functionally Graded Plates", Lat. Am. J. Solids Stru., 10(3), 549-570. http://dx.doi.org/10.1590/S1679-78252013000300006 - Damanpack, A.R., Bodaghi, M., Aghdam, M.M. and Shakeri, M. (2013b), "Active control of geometrically non-linear transient response of sandwich beams with a flexible core using piezoelectric patches", Compos. Struct., 100, 517-531. https://doi.org/10.1016/j.compstruct.2012.12.029
- Daouadji, T.H. and Tounsi, A. (2013), "A new higher order shear deformation model for static behavior of functionally graded plates", Adv. Appl. Math Mech., 5(3), 351-364. https://doi.org/10.1017/S2070073300002721
- Ding, J., Chu, L., Xin, L. and Dui, G. (2018), "Nonlinear Vibration Analysis of Functionally Graded Beams Considering the Influences of the Rotary Inertia of the Cross Section and Neutral Surface Position", Mech. Based Des. Struct., 46(2), 225-237. https://doi.org/10.1080/15397734. 2017.1329020
- Duc, N.D., Thang, P.T., Dao, N.T. and Tac, H.V. (2015), "Nonlinear buckling of higher deformable S-FGM thick circular cylindrical shells with metal-ceramic-metal layers surrounded on elastic foundations in thermal environment", Compos. Struct., 121, 134-141. https://doi.org/10.1016/j.compstruct.2014.11.009
- Fereidoon, A., Ghadimi, M., Barari, A., Kaliji, H.D. and Domairry, G. (2011), "Nonlinear vibration of oscillation systems using frequency-amplitude formulation", Shock Vib., 19(3), 323-332. https://doi.org/10.3233/SAV-2011-0633
- Fouladi, F., Hosseinzadeh, E., Barari, A. and Domairry, G. (2010), "Highly Nonlinear Temperature-Dependent Fin Analysis by Variational Iteration Method", Heat Transf. Res., 41(2), 155-165. https://doi.org/10.1615/HeatTransRes. v41.i2.40
- Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., Int. J., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109
- Ganapathi, M. and Prakash, T. (2006), "Thermal buckling of simply supported functionally graded skew plates", Compos. Struct., 74(2), 247-250. https://doi.org/10.1016/j.compstruct. 2005. 04.004
- Ganji, S.S., Barari, B. and Ganji, D.D. (2011), "Approximate analyses of two mass-spring systems and buckling of a column", Comput. Math. Appl., 61(4), 1088-1095. https://doi.org/10.1016/j.camwa.2010.12.059
- Ganji, S.S., Barari, A., Ibsen, L.B. and Domairry, G. (2012), "Differential transform method for mathematical modeling of jamming transition problem in traffic congestion flow", Cent. Eur. J. Oper. Res., 20, 87-100. https://doi.org/10.1007/s10100 -010-0154-7
- He, J.H. (2006), "Some asymptotic methods for strongly nonlinear equations", Int. J. Mod. Phys. B, 20(10), 1141-1199. https://doi.org/10.1142/S0217979206033796
- He, J.H. and Wu, X.H. (2007), "Variational iteration method: new development and applications", Comput. Math. Appl., 54, 881-894. https://doi.org/10.1016/j.camwa.2006.12.083
- Hosseini, H.S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of reissner-mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi:10.1016/j.ijmecsci.2010.10.002
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
- Huang, J.L., Su, R.K.L., Lee, Y.Y. and Chen, S.H. (2011), "Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities", J. Sound Vib., 330, 5151-5164. https://doi.org/10.1016/j.jsv. 2011.05.023
- Hussain, M. and Naeem, M. (2019a), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039
- Hussain, M. and Naeem, M.N. (2019b), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C., 233(16), 5763-5780. https://doi.org/10.1177/095440 6218802320
- Hussain, M., Naeem, M.N., and Isvandzibaei, M. (2018a), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459
- Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/09544 06218802320
- Ibsen, L.B., Barari, A. and Kimiaeifar, A.S. (2010), "Analysis of highly nonlinear oscillation systems using He's max-min method and comparison with homotopy analysis and energy balance methods", Sadhana, 35(4), 433-448. https://doi.org/ 10.1007/s12046-010-0024-y
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
- Kamarian, S., Bodaghi, M., Pourasghar, A. and Talebi, S. (2016), "Vibrational behavior of non-uniform piezoelectric sandwich beams made of CNT-reinforced polymer nanocomposite by considering the agglomeration effect of CNTs", Polym. Compos., 38, E553-E562. https://doi.org/10.1002/pc.23933
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1
- Khoa, N.D., Thiem, H.T. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells withmetal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583
- Lee, Y.Y., Li, Q.S., Leung, A.Y.T. and Su, R.K.L. (2012), "The jump phenomenon effect on the sound absorption of a nonlinear panel absorber and sound transmission loss of a nonlinear panel backed by a cavity", Nonlinear Dyn., 69, 99-116. https://doi.org/10.1007/ s11071-011-0249-2
- Leung, A.Y.T., Guo, Z.J. and Fung, T.C. (2010), "The multi parameter homotopy harmonic balance method for steady state problems", Int. J. Comput. Math., 87(5), 1158-1177. https://doi.org/10.1080/00207160903229899
- Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177%2F1099636217727577 https://doi.org/10.1177/1099636217727577
- Moeenfard, H., Mojahedi, M. and Ahmadian, M.T. (2011), "A homotopy perturbation analysis of nonlinear free vibration of Timoshenko microbeams", J. Mech. Sci. Technol., 25, 557-565. https://doi.org/10.1007/s12206-011-0130-8
- Pirbodaghi, T., Ahmadian, M.T. and Fesanghary, M. (2009), "On the homotopy analysis method for non-linear vibration of beams", Mech. Res. Commun., 36, 143-148. https://doi.org/10.1016/j.mechrescom.2008.08.001
- Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(3), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
- Rafei, M., Ganji, D., Daniali, H. and Pashaei, H. (2007), "Thevariational iteration method for nonlinear oscillators with discontinuities", J. Sound Vib., 305, 614-620. https://doi.org/10.1016/j.jsv.2007.04.020
- Selmi, A. (2019), "Buckling capacity of functionally graded beams: A comparative study of different shear deformation beam theories", Int. J. Computat. Mater. Sci. Eng., 8(2), 1950003. https://doi.org/10.1142/S2047684119500039
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Simsek, M. (2015), "Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using He's variational method", Compos. Struct., 131, 207-214. https://doi.org/10.1016/j.compstruct.2015.05.004
- Sofiyev, A.H., Hui, D. and Valiyev, A.A. (2016), "Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium", Mech. Based Des. Struct., 44(4), 384-404. https://doi.org/10.1080/15397734.2015.1083870
- Sundararajan, N., Prakash, T. and Ganapathi, M. (2005), "Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments", Finite Elem. Anal. Des., 42(2), 152-168. https://doi.org/10.1016/j.finel.2005.06.001
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., Int. J., 60(4), 547-565. https://doi.org/10.12989/sem.2016. 60.4.547
- Tufekci, E., Eroglu, U. and Aya, S.A. (2016), "Exact solution for in-plane static problems of circular beams made of functionally graded materials", Mech. Based Des. Struct., 44(4), 476-494. https://doi.org/10.1080/15397734. 2015.1121398
- Udupa, G., Rao, S.S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Procedia Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442
- Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.10 07/s11012-013-9720-0 https://doi.org/10.1007/s11012-013-9720-0
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analysesof functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
- Yazdi, A.A. (2013), "Homotopy perturbation method for nonlinear vibration analysis of functionally graded plate", J. Vib. Acoust., 135(2), 021012 (6 pages). https://doi.org/10.1115/1.4023252
- Younesian, D., Sadri, M. and Esmailzadeh, E. (2014), "Primary and secondary resonance analyses of clamped-clamped microbeams", Nonlinear Dyn., 76, 1867-1884. https://doi.org/10.1007/s11071-014-1254-z
- Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.https://doi.org/10.1007/s11071-010-9790-7
Cited by
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
- Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2020, https://doi.org/10.1007/s00419-021-01973-7
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307
- An innovative system for novel vibration of rotating FG shell with combination of fraction laws vol.12, pp.2, 2020, https://doi.org/10.12989/acc.2021.12.2.157