• Title/Summary/Keyword: scattering center

Search Result 544, Processing Time 0.027 seconds

A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures (복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

A Study on Scattering Center Extraction Using Full Polarimetric Data (다중편파 데이터를 이용한 표적 산란점 추출에 대한 연구)

  • Jeong, Seong-Jae;Lee, Seung-Jae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.463-470
    • /
    • 2016
  • In this paper, we introduce a method of scattering centers extraction using the polarimetric data. VIRAF software based on the PO (Physical Optics) and PTD(Physical Theory of Diffraction) were used to calculate the surface scattering and the edge or wedge scattering, respectively. In addition, by using the unitary transformation, 4-channel data based on the linear polarization basis were converted to 2-channel data based on the left/vertical-circular polarization basis, leading to data compression coherently. The scattering mechanism was analyzed in terms of the polarization states and different look angles by using the scattering center of a target extracted by the 2D RELAX algorithm.

Performance Improvement for 2-D Scattering Center Extraction and ISAR Image Formation for a Target in Radar Target Recognition (레이다 표적 인식에서 표적에 대한 2차원 산란점 추출 및 ISAR 영상 형성에 대한 성능 개선)

  • Shin, Seung-Yong;Lim, Ho;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.984-996
    • /
    • 2007
  • This paper presents techniques of 2-D scattering center extraction and 2-B ISAR(Inverse SAR) image formation for scattering wave which is scattered by a target. In general, 2-D IFFT is widely used to obtain 2-D scattering center and ISAR image of targets. But, this method has drawbacks, that is poor in a resolution aspect. To overcome these shortcomings with the FT(Fourier Transform)-based method, various techniques of high resolution signal processing were developed. In this paper, algorithms of 2-D scattering center extraction and ISAR image formation such as 2-D MEMP(Matrix Enhancement and Matrix Pencil), 2-D ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and F-18 aircraft to estimate 2-D scattering center and abtain 2-D ISAR image.

Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Hee Chang;Lee, Kyohyun;Kim, Seung Heon;Lee, Dong Eun;Jang, Kyoung Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1289-1296
    • /
    • 2021
  • In this study, an electron-scattering device was fabricated to practically use the ultra-high dose rate electron beams for the FLASH preclinical research in Dongnam Institute of Radiological and Medical Sciences. The Dongnam Institute of Radiological and Medical Sciences has been involved in the investigation of linear accelerators for preclinical research and has recently implemented FLASH electron beams. To determine the geometry of the scattering device for the FLASH preclinical research with a 6-MeV linear accelerator, the Monte Carlo N-particle transport code was exploited. By employing the fabricated scattering device, the off-axis and depth dose distributions were measured with radiochromic films. The generated mean energy of electron beams via the scattering device was 4.3 MeV, and the symmetry and flatness of the off-axis dose distribution were 0.11% and 2.33%, respectively. Finally, the doses per pulse were obtained as a function of the source to surface distance (SSD); the measured dose per pulse varied from 4.0 to 0.2 Gy/pulse at an SSD range of 20-90 cm. At an SSD of 30 cm with a 100-Hz repetition rate, the dose rate was 180 Gy/s, which is sufficient for the preclinical FLASH studies.

One-Dimensional Radar Scattering Center for Target Recognition of Ground Target in W-Band Millimeter Wave Seeker Considering Missile Flight-Path Scenario (유도탄 조우 시나리오를 고려한 W-대역 밀리미터파 탐색기의 지상 표적 식별을 위한 1차원 산란점 추출에 관한 연구)

  • Park, Sungho;Kim, Jihyun;Woo, Seon-Keol;Kwon, Jun-Beom;Kim, Hong-Rak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.982-992
    • /
    • 2017
  • In this paper, we introduce a method of selection for the optimal transmission polarization of a W-band seeker through the extraction of the one-dimensional scattering center of a ground tank target. We calculated the surface scattering and edge scattering using the shooting and bouncing ray tracing method of the CST A-solver. Based on 4-channel RCS data, using the one-dimensional RELAX algorithm, which is a kind of spectral estimation technique, scattering centers of ground targets were extracted. According to the changes in the polarization state and look angle, we compared and analyzed the scattering center results. Through simulation, we verified that the scattering center results can be applied when feature vectors are used for target recognition.

A Study of Penetration Depth into Ceiling Materials containing Asbestos according to Dilution Rate of Scattering Prevention Agent (석면 함유 천장재의 안정화제 희석에 따른 침투깊이 연구)

  • Shin, Hyungyoo;Choi, Youngkue;Jeon, Boram;Ha, Jooyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.82-88
    • /
    • 2015
  • Objectives: This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of $10{\ell}/min$ at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and $147{\mu}m$, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from $156{\mu}m$ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.

Scattering cross section for various potential systems

  • Odsuren, Myagmarjav;Kato, Kiyoshi;Khuukhenkhuu, Gonchigdorj;Davaa, Suren
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1006-1009
    • /
    • 2017
  • We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the ${\alpha}-{\alpha}$ system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the ${\alpha}-{\alpha}$ and ${\alpha}-n$ systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

Compressive sensing-based two-dimensional scattering-center extraction for incomplete RCS data

  • Bae, Ji-Hoon;Kim, Kyung-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.815-826
    • /
    • 2020
  • We propose a two-dimensional (2D) scattering-center-extraction (SCE) method using sparse recovery based on the compressive-sensing theory, even with data missing from the received radar cross-section (RCS) dataset. First, using the proposed method, we generate a 2D grid via adaptive discretization that has a considerably smaller size than a fully sampled fine grid. Subsequently, the coarse estimation of 2D scattering centers is performed using both the method of iteratively reweighted least square and a general peak-finding algorithm. Finally, the fine estimation of 2D scattering centers is performed using the orthogonal matching pursuit (OMP) procedure from an adaptively sampled Fourier dictionary. The measured RCS data, as well as simulation data using the point-scatterer model, are used to evaluate the 2D SCE accuracy of the proposed method. The results indicate that the proposed method can achieve higher SCE accuracy for an incomplete RCS dataset with missing data than that achieved by the conventional OMP, basis pursuit, smoothed L0, and existing discrete spectral estimation techniques.

NEUTRON ELASTIC AND NON-ELASTIC SCATTERING STUDIES IN TENS OF MeV REGION

  • Baba Mamoru;Ibaraki Masanobu;Miura Takako;Aoki Takao;Nakashima Hiroshi;Tanaka Shin-ichiro Meigo Susumu
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.265-270
    • /
    • 2001
  • Experimental data have been obtained on the neutron elastic scattering cross sections for 55, 65 and 75 MeV neutrons, and non-elastic scattering cross sections for 40 to 80 MeV neutrons using the $^7Li(p,n)$ neutron source at TIARA of Japan Atomic Energy Research Institute and the TOF method. Data were obtained for C, Si, Fe, Zr, and Pb of natural elements. Elastic scattering data were obtained for 25 laboratory angles between 2.6 and 53.0 that clarified the angular distributions and angle integrated values. The data obtained were compared favorably with recent LA150 data library.

  • PDF

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography

  • Song, Woosub;Lee, Seung Seok;Lee, Byeong-il;Choi, Eun Seo
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.278-288
    • /
    • 2021
  • We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.