DOI QR코드

DOI QR Code

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography

  • Song, Woosub (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute) ;
  • Lee, Seung Seok (Department of Physics, Chosun University) ;
  • Lee, Byeong-il (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute) ;
  • Choi, Eun Seo (Department of Physics, Chosun University)
  • Received : 2021.01.18
  • Accepted : 2021.03.22
  • Published : 2021.06.25

Abstract

We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.

Keywords

Acknowledgement

This work was supported the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (grant no. NRF-2017R1A2B2009732).

References

  1. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
  2. T. D. Wang and J. Van Dam, "Optical biopsy: a new frontier in endoscopic detection and diagnosis," Clin. Gastroenterol. Hepatol. 2, 744-753 (2004). https://doi.org/10.1016/S1542-3565(04)00345-3
  3. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Fitzmaurice, M. Crawford, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000). https://doi.org/10.1038/35017638
  4. C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, "Feasibility of field-based light scattering spectroscopy," J. Biomed. Opt. 5, 138-143 (2000). https://doi.org/10.1117/1.429980
  5. A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26, 322-324 (2001). https://doi.org/10.1364/OL.26.000322
  6. J. W. Pyhtila, R. N. Graf, and A. Wax, "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system," Opt. Express 11, 3473-3484 (2003). https://doi.org/10.1364/OE.11.003473
  7. R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13, 4693-4698 (2005). https://doi.org/10.1364/OPEX.13.004693
  8. S. A. Alexandrov and D. D. Sampson, "Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency," J. Opt. A: Pure Appl. Opt. 10, 025304 (2008). https://doi.org/10.1088/1464-4258/10/2/025304
  9. S. A. Alexandrov, S. Uttam, R. K. Bista, K. Staton, and Y. Liu, "Spectral encoding of spatial frequency approach for characterization of nanoscale structures," Appl. Phys. Lett. 101, 033702 (2012). https://doi.org/10.1063/1.4737209
  10. S. A. Alexandrov, S. Uttam, R. K. Bista, C. Zhao, and Y. Liu, "Real-time quantitative visualization of 3D structural information," Opt. Express 20, 9203-9214 (2012). https://doi.org/10.1364/OE.20.009203
  11. S. A. Alexandrov, H. M. Subhash, A. Zam, and M. Leahy, "Nano-sensitive optical coherence tomography," Nanoscale 6, 3545-3549 (2014). https://doi.org/10.1039/C3NR06132A
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  13. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). https://doi.org/10.1364/OL.24.001221
  14. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). https://doi.org/10.1364/OPEX.12.000367
  15. M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005). https://doi.org/10.1016/j.ophtha.2005.05.023
  16. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). https://doi.org/10.1364/OPEX.12.002404
  17. P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Haeusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin," Proc SPIE 3567, 78-88 (1999).
  18. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ㎛ wavelength," Opt. Express 11, 3598-3604 (2003). https://doi.org/10.1364/OE.11.003598
  19. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). https://doi.org/10.1364/OE.11.002953
  20. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). https://doi.org/10.1364/OE.11.002183
  21. S. Srinivas, M. G. Nittala, A. Hariri, M. Pfau, J. Gasperini, M. Ip, and S. R. Sadda, "Quantification of intraretinal hard exudates in eyes with diabetic retinopathy by optical coherence tomography," Retina 38, 231-236 (2018). https://doi.org/10.1097/IAE.0000000000001545
  22. S. Schubert, M. Hosking, E. Balbacid, F. Berger, C. Voss, N. Lee, and K. Harris, "Optical coherence tomography (OCT) detects early coronary changes related to cardiac allograft vasculopathy in pediatric transplant recipients: results from a multicenter study group," Thorac. Cardiovasc. Surg. 65, S111-S142 (2017).
  23. C. Yang, "Molecular contrast optical coherence tomography: a review," Photochem. Photobiol. 81, 215-237 (2005). https://doi.org/10.1562/2004-08-06-IR-266.1
  24. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). https://doi.org/10.1364/OL.25.000111
  25. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005). https://doi.org/10.1117/1.2008974
  26. D. R. Bauer, X. Wang, J. Vollin, H. Xin, and R. S. Witte, "Spectroscopic thermoacoustic imaging of water and fat composition," Appl. Phys. Lett. 101, 033705 (2012). https://doi.org/10.1063/1.4737414
  27. C. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005). https://doi.org/10.1364/OPEX.13.005450
  28. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4802 (2004). https://doi.org/10.1364/OPEX.12.004790
  29. A. L. Oldenburg, C. Xu, and S. A. Boppart, "Spectroscopic optical coherence tomography and microscopy," IEEE J. Sel. Top. Quantum Electron. 13, 1629-1640 (2007). https://doi.org/10.1109/JSTQE.2007.910292
  30. N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, "Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy," Opt. Lett. 34, 3746-3748 (2009). https://doi.org/10.1364/OL.34.003746
  31. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, "Depth resolved detection of lipid using spectroscopic optical coherence tomography," Biomed. Opt. Express 4, 1269-1284 (2013). https://doi.org/10.1364/BOE.4.001269
  32. C. Matzler, "MATLAB functions for Mie scattering and absorption. Version 2," Research Report No. 2002-11 (Institut fur Angewandte Physik (IAP), Bern, Switzerland, 2002).
  33. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998). https://doi.org/10.1103/PhysRevLett.80.627