Acknowledgement
This work was supported the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (grant no. NRF-2017R1A2B2009732).
References
- K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
- T. D. Wang and J. Van Dam, "Optical biopsy: a new frontier in endoscopic detection and diagnosis," Clin. Gastroenterol. Hepatol. 2, 744-753 (2004). https://doi.org/10.1016/S1542-3565(04)00345-3
- V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Fitzmaurice, M. Crawford, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000). https://doi.org/10.1038/35017638
- C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, "Feasibility of field-based light scattering spectroscopy," J. Biomed. Opt. 5, 138-143 (2000). https://doi.org/10.1117/1.429980
- A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26, 322-324 (2001). https://doi.org/10.1364/OL.26.000322
- J. W. Pyhtila, R. N. Graf, and A. Wax, "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system," Opt. Express 11, 3473-3484 (2003). https://doi.org/10.1364/OE.11.003473
- R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13, 4693-4698 (2005). https://doi.org/10.1364/OPEX.13.004693
- S. A. Alexandrov and D. D. Sampson, "Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency," J. Opt. A: Pure Appl. Opt. 10, 025304 (2008). https://doi.org/10.1088/1464-4258/10/2/025304
- S. A. Alexandrov, S. Uttam, R. K. Bista, K. Staton, and Y. Liu, "Spectral encoding of spatial frequency approach for characterization of nanoscale structures," Appl. Phys. Lett. 101, 033702 (2012). https://doi.org/10.1063/1.4737209
- S. A. Alexandrov, S. Uttam, R. K. Bista, C. Zhao, and Y. Liu, "Real-time quantitative visualization of 3D structural information," Opt. Express 20, 9203-9214 (2012). https://doi.org/10.1364/OE.20.009203
- S. A. Alexandrov, H. M. Subhash, A. Zam, and M. Leahy, "Nano-sensitive optical coherence tomography," Nanoscale 6, 3545-3549 (2014). https://doi.org/10.1039/C3NR06132A
- D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
- W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). https://doi.org/10.1364/OL.24.001221
- N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). https://doi.org/10.1364/OPEX.12.000367
- M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005). https://doi.org/10.1016/j.ophtha.2005.05.023
- M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). https://doi.org/10.1364/OPEX.12.002404
- P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Haeusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin," Proc SPIE 3567, 78-88 (1999).
- S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ㎛ wavelength," Opt. Express 11, 3598-3604 (2003). https://doi.org/10.1364/OE.11.003598
- S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). https://doi.org/10.1364/OE.11.002953
- M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). https://doi.org/10.1364/OE.11.002183
- S. Srinivas, M. G. Nittala, A. Hariri, M. Pfau, J. Gasperini, M. Ip, and S. R. Sadda, "Quantification of intraretinal hard exudates in eyes with diabetic retinopathy by optical coherence tomography," Retina 38, 231-236 (2018). https://doi.org/10.1097/IAE.0000000000001545
- S. Schubert, M. Hosking, E. Balbacid, F. Berger, C. Voss, N. Lee, and K. Harris, "Optical coherence tomography (OCT) detects early coronary changes related to cardiac allograft vasculopathy in pediatric transplant recipients: results from a multicenter study group," Thorac. Cardiovasc. Surg. 65, S111-S142 (2017).
- C. Yang, "Molecular contrast optical coherence tomography: a review," Photochem. Photobiol. 81, 215-237 (2005). https://doi.org/10.1562/2004-08-06-IR-266.1
- U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). https://doi.org/10.1364/OL.25.000111
- S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005). https://doi.org/10.1117/1.2008974
- D. R. Bauer, X. Wang, J. Vollin, H. Xin, and R. S. Witte, "Spectroscopic thermoacoustic imaging of water and fat composition," Appl. Phys. Lett. 101, 033705 (2012). https://doi.org/10.1063/1.4737414
- C. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005). https://doi.org/10.1364/OPEX.13.005450
- C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4802 (2004). https://doi.org/10.1364/OPEX.12.004790
- A. L. Oldenburg, C. Xu, and S. A. Boppart, "Spectroscopic optical coherence tomography and microscopy," IEEE J. Sel. Top. Quantum Electron. 13, 1629-1640 (2007). https://doi.org/10.1109/JSTQE.2007.910292
- N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, "Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy," Opt. Lett. 34, 3746-3748 (2009). https://doi.org/10.1364/OL.34.003746
- C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, "Depth resolved detection of lipid using spectroscopic optical coherence tomography," Biomed. Opt. Express 4, 1269-1284 (2013). https://doi.org/10.1364/BOE.4.001269
- C. Matzler, "MATLAB functions for Mie scattering and absorption. Version 2," Research Report No. 2002-11 (Institut fur Angewandte Physik (IAP), Bern, Switzerland, 2002).
- L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998). https://doi.org/10.1103/PhysRevLett.80.627