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a b s t r a c t

We discuss the problems of scattering in this framework, and show that the applied method is very
useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this
study, not only the scattering cross sections but also the decomposition of the scattering cross sections
was computed for the aea system. To obtain the decomposition of scattering cross sections into reso-
nance and residual continuum terms, the complex scaled orthogonality condition model and the
extended completeness relation are used. Applying the present method to the aea and aen systems, we
obtained good reproduction of the observed phase shifts and cross sections. The decomposition into
resonance and continuum terms makes clear that resonance contributions are dominant but continuum
terms and their interference are not negligible. To understand the behavior of observed phase shifts and
the shape of the cross sections, both resonance and continuum terms are calculated.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Studies of scattering problems in nuclear physics have been
developed using various experimental techniques and theoretical
methods. One very promising method, the complex scaling method
(CSM) [1], has been applied to scattering and resonance problems.
This approach seems to promise to unify the description of the
nuclear structure and reactions, also including nuclear data evalu-
ation, especially for light nuclear mass systems [2e6]. In this work,
we use the CSM to study scattering phase shifts. It has been shown
to be possible to calculate scattering phase shifts according to the
continuum level density (CLD) [7]. We develop a method of calcu-
lating the CLD to investigate the effects of the resonant states, which
are related to the nuclear structures, and which are separate from
the continuum states. The background contributions to the phase
shifts are also considered. This method is applied to the complex
scaled orthogonality condition model [4] of different scattering
systems including the aen and aea systems. The background phase
shift is also obtained using the residual continuum solutions in the
CSM. We discuss the problems of scattering in this framework, and
show that thismethod is very useful in the investigation of the effect
of the resonance in the observed scattering cross sections.

2. Theoretical framework

2.1. Complex scaling method

The CSM has been introduced to determine resonant states
within L2 basis functions, and is defined by the following complex-
dilatation transformation for relative coordinate r! andmomentum

k
!

r!/ r!eiq; k
!
/ k

!
eiq (1)

where q is a scaling angle and 0 < q < qmax. The maximum value
qmaxis determined to keep analyticity of the potential. For example,
qmax ¼ p/4 for a Gaussian potential. This transformation makes
every branch cut to rotate by �2q on the complex energy plane.
Applying this transformation, we can write the complex-scaled
Schrӧdinger equation as follows:

HqJv
JpðqÞ ¼ EqvJ

v
JpðqÞ (2)

The complex-scaled Hamiltonian Hq and wave function Jv
Jp ðqÞ

are defined as U(q) HU(q)�1 and UðqÞJv
Jp , respectivelydsee [1,2] for

details.
Applying the L2 basis function method, the radial wave function

is expanded as
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Jv
JpðqÞ ¼

XN
i¼1

cJ
pv
i ðqÞfiðrÞ (3)

where fi(r) is an appropriate basis function set. The expansion

coefficients cJ
pv
i and the complex energy eigenvalues Eqv are ob-

tained by solving the complex eigenvalue problem given in Eq. (2).
The complex energies of the resonant states are obtained as
Er ¼ Eresr � iG=2, when tan�1ðGr=2Eresr Þ<2q.

To solve the eigenvalue problem of Eq. (2), we employ the
Gaussian basis functions given as follows:

fiðrÞ ¼ NlðbiÞrlexp
 

� 1
2b2i

r2
!
YlmðbrÞ; (4)

where the range parameters are given by a geometric progression
as bi ¼ b0g

i�1; i ¼ 1,…,N, and Nl(bi) is the normalization factor. We
take N ¼ 60 and employ the optimal values of b0 and g to obtain
stationary solutions. All results are obtained with q ¼ 15�.

2.2. Continuum-level density and phase shift

The CLD D(E) is given as

DðEÞ ¼ �1
p
Im
n
Tr
h
GþðEÞ � Gþ

0 ðEÞ
io

(5)

where

GþðEÞ ¼ ðE þ iε� HÞ�1 and

Gþ
0 ðEÞ ¼ ðE þ iε� H0Þ�1

are the full and free Green's functions, respectively. In this study,
the Hamiltonian H and H0 are transformed using the CSM.

The CLD is related to the scattering phase shift d(E); it can be
expressed in the following form in the single channel case [7]:

DðEÞ ¼ 1
p

ddðEÞ
dE

(6)

Using this relation, we can obtain the phase shift as a function of
the eigenvalues in the complex scaled Hamiltonian by integrating
the CLD.

When we expand the wave functions in terms of the finite
number of basis states N, the discretized eigenstates are obtained
with number N and the level density can be approximated as
in [7]:

DðEÞzDN
q ðEÞ ¼ �1

p
Im

24XNb

b¼1

1
E þ i0� Eb

þ
XNq

r

r¼1

1
E � Eresr þ iGr=2

þ
XNq

c

c¼1

1
E � ε

r
c þ iεic

�
XN
k¼1

1
E � ε

0r
k þ iε0ik

35
(7)

where N ¼ Nb þ Nq
r þ Nq

c is the total number of Nb (bound states),

Nq
r (resonance states), and Nq

c (continuum states) solutions. Then,
we can obtain the phase shift

dNq ðEÞ ¼Nbpþ
XNq

r

r¼1



� cot�1
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þ
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(
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E � ε

0r
k
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!)
(8)

where E � 0. When we define dr, dc, and dk as

cot dr ¼ Eresr � E
Gr=2

; cot dc ¼ ε
r
c � E
ε
i
c

; cot dk ¼
ε
0r
k � E

ε
0i
k

(9)

respectively, we can write the phase shift as

dNq ðEÞ ¼ Nbpþ
XNq

r

r¼1

dr þ
XNq

c

c¼1

dc �
XN
k¼1

dk (10)

The geometrical indications for dr, dc, and dk are given for two
energy cases, larger or smaller than the real parts of the eigene-
nergies Er, εc, and εk, as shown in Fig. 1. The phase shift dr for the
resonances is the angle of the r th resonant pole measured at the
energy E on the real energy axis. At E ¼ Eresr , we have dr ¼ p/2 for
every resonant pole. In addition, dr ¼ tan�1ðGr=2Eresr Þ>0 at E ¼ 0
and dr ¼ p at E ¼ ∞ for each resonance. Similarly, phase shifts from
continuum terms including the asymptotic part, dk, are given by the
angles of the discretized continuum energies. At E ¼ ∞, the con-
tinuum terms of the phase shifts go to �ðNb þ Nq

r Þp because of the

relation N ¼ Nb þ Nq
r þ Nq

c :

2.3. Cross section

The cross section is described using the calculated phase shifts;
we can identify the contributions from every resonant pole and
continuum term. When we concentrate our interest on the
contribution from a single resonant pole and other terms that are
mainly described as background phase shift, we can achieve the
same results as those of Fano [8]. The total and partial reaction cross
sections can be calculated using the results of the phase shifts

Fig. 1. Geometrical indications of phase shifts: dr, dc, and dk.
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decomposed into the contributions of the resonance and contin-
uum. From these results, we can investigate the contributions of
resonance and continuum states in the cross sections.

The partial cross sections sl for each partial wave with index l
can be expressed as follows:

sl ¼
4p
k2

ð2lþ 1Þsin2dlðEÞ (11)

where k2 ¼ 2Em/h2 and m are the reduced mass of the system.
The phase shift dl(E) is expressed in the form drþ db, where dr and

db are the single resonance and the background terms, including all
other terms given in Eq. (8), respectively. The shape of the cross
section can be investigated by evaluating the resonance dr and
background db phase shifts. The total cross section is expressed as

sðEÞ ¼
X∞
l

slðEÞ (12)

3. Results and discussion

One of the methods to prove the nuclear structure is to use the
scattering phenomena. In this part, we concern ourselves with the
scattering due to the relative motion of two particles. The aea

scattering phase shifts provide a convenient test of several impor-
tant properties of low-energy nuclear scattering. The scattering
phase shifts of this two-body system are calculated using Eq. (8),
which is derived, using the extended completeness relation, from
the CLD. After the calculation of the decomposed scattering phase
shifts, the partial cross sections of low-lying states are studied with
the resonance and continuum contributions for the aea system.

In Fig. 2, the scattering phase shifts of five partial waves as
functions of energy in aea are displayed.

Two different potentials [9,10], phenomenological and folding
potentials, are used, for which treatment of the Pauli principle
between two alphas is different. From the results shown in Fig. 2, it
can be seen that both potentials are capable in the aea system; it
can also be clearly seen that the calculated scattering phase shifts
are similar for the different potential sets.

The total cross sections of the aen system are calculated in
terms of the scattering phase shifts using Eq. (12), which is shown
in Fig. 3. The open circles in Fig. 3 show the experimental data,

which were taken from [11e14]. As can be seen in Fig. 3, the
theoretical total cross section is in reasonable agreement with the
experimental data.

The total cross section is given by the sum of the partial ones,
which are expressed as the interference of the resonance and the
continuum contribution, as discussed by Fano [8], due to the rela-
tion dl ¼ dr þ dc in the phase shifts, given in Eq. (10). As can be seen
in Fig. 3, there is a very sharp peak at the low energy of around
2 MeV that has a long tail distribution in the higher energies. The

Fig. 2. Scattering phase shifts of the aea system at the Jp ¼ 0þ, 2þ, 4þ, 6þ, and 8þ

waves with Buck potential [9] (solid curves) and SchmideWildermuth [10] potential
(dashed curves).

Fig. 3. Total cross section of the aen system. Open circles display the experimental
data taken from [11e14], and the dotted line shows the present results.

Fig. 4. Partial cross sections at the Jp ¼ 2þ, 4þ, 8þ, and 10þ of the aea system. The
curves, dotted lines, and dashed lines denote the results of resonance and continuum
contributions of cross sections and partial cross sections, respectively. The arrow in-
dicates the resonance energy.
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low-energy cross section dominantly comes from l ¼ 1 partial
waves.

In Fig. 4, the partial cross sections and their decomposition into
resonance and continuum terms are shown for L ¼ 2, 4, 8, and 10
waves of the aea system. The partial cross sections are calculated
using Eq. (11).

The partial cross section for L ¼ 0 is very sharp, like the d func-
tion, because of the small decay width of the L¼ 0 resonance. Thus,
we skipped the L ¼ 0 partial cross section. For L ¼ 2 and 4, reso-
nance cross sections have shapes like that of the BreiteWigner
form. The continuum contribution of L ¼ 2 is rather large, whereas
this contribution is small for L ¼ 4. Compared with the L ¼ 2 case,
the partial cross section of L ¼ 4 is not so different from the reso-
nance cross section. It is interesting that the peak energies of the
partial cross-section shift fairly far from the position of the reso-
nance energies. From Fig. 4, it can be clearly seen that the L ¼2 and
4 partial waves give a bell-shaped structure of the cross section.
However, no bell-shaped structure of the cross sections in the L ¼ 8
and 10 partial waves is observed.

The continuum contributions of the cross section exhibit almost
the same behavior in both the L ¼ 8 and L ¼ 10 states, as shown in
Fig. 4. These contributions change the form of the cross section
from a symmetric BreiteWigner shape to asymmetric peaks.
Although the resonant peak of the cross section can be clearly seen
in the cases of L¼ 2 and L¼ 4, for L¼ 8 and L¼ 10, the results show
a mild bump in the partial cross section.

4. Summary

We have investigated the scattering phase shifts of the two-
body aea system with different effective potentials. Two
different potentials were used to show that the resonance be-
haviors of the scattering phase shifts are similar to each other. In
this study, not only the scattering cross sections but also the
decomposition of the scattering cross sections was computed for
the aea system; resonance and continuum contributions were
also obtained at the same time by applying the extended
completeness relation.

Applying the present framework to the aea and aen systems,
we obtained good reproduction of the observed phase shifts and
cross sections. The decomposition into resonance and continuum
terms makes clear that resonance contributions are dominant but
continuum terms and their interference are not negligible. To un-
derstand the behavior of observed phase shifts and the shape of the

cross sections, both resonance and continuum terms must neces-
sarily be taken into account. If the continuum term is zero, the cross
section exhibits a typical BreiteWigner form. As was discussed by
Fano [8], deviation from the BreiteWigner form can be investigated
by calculating the interference between the resonance and con-
tinuum terms.
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