DOI QR코드

DOI QR Code

Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC

  • Jeong, Dong Hyeok (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Lee, Manwoo (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Lim, Heuijin (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Kang, Sang Koo (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Lee, Sang Jin (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Kim, Hee Chang (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Lee, Kyohyun (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Kim, Seung Heon (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Lee, Dong Eun (Research Center, Dongnam Institute of Radiological and Medical Sciences) ;
  • Jang, Kyoung Won (Research Center, Dongnam Institute of Radiological and Medical Sciences)
  • Received : 2020.07.01
  • Accepted : 2020.09.14
  • Published : 2021.04.25

Abstract

In this study, an electron-scattering device was fabricated to practically use the ultra-high dose rate electron beams for the FLASH preclinical research in Dongnam Institute of Radiological and Medical Sciences. The Dongnam Institute of Radiological and Medical Sciences has been involved in the investigation of linear accelerators for preclinical research and has recently implemented FLASH electron beams. To determine the geometry of the scattering device for the FLASH preclinical research with a 6-MeV linear accelerator, the Monte Carlo N-particle transport code was exploited. By employing the fabricated scattering device, the off-axis and depth dose distributions were measured with radiochromic films. The generated mean energy of electron beams via the scattering device was 4.3 MeV, and the symmetry and flatness of the off-axis dose distribution were 0.11% and 2.33%, respectively. Finally, the doses per pulse were obtained as a function of the source to surface distance (SSD); the measured dose per pulse varied from 4.0 to 0.2 Gy/pulse at an SSD range of 20-90 cm. At an SSD of 30 cm with a 100-Hz repetition rate, the dose rate was 180 Gy/s, which is sufficient for the preclinical FLASH studies.

Keywords

Acknowledgement

The work was supported by the Dongnam Institute of Radio-logical and Medical Sciences (DIRAMS) grant funded by the Korea government Ministry of Science and ICT (MSIT) (No. 50495-2020 and 50498-2020).

References

  1. B. Dobler, F. Lorenz, H. Wertz, M. Polednik, D. Wolff, V. Steil, F. Lohr, F. Wenz, Intensity-modulated radiation therapy (IMRT) with different combinations of treatment-planning systems and linacs, Strahlenther. Onkol. 182 (2006) 481-488. https://doi.org/10.1007/s00066-006-1544-6
  2. B. Cho, P.R. Poulsen, P. J Keall, Real-time tumor tracking using sequential kV imaging combined with respiratory monitoring: a general framework applicable to commonly used IGRT systems, Phys. Med. Biol. 55 (2010) 3299-3316. https://doi.org/10.1088/0031-9155/55/12/003
  3. B.M. Prendergast, J.B. Fiveash, R.A. Popple, G.M. Clark, E.M. Thomas, D.J. Minnich, R. Jacob, S.A. Spencer, J.A. Bonner, M.C. Dobelbower, Flattening filter-free LINAC improves treatment delivery efficiency in stereotactic body radiation therapy, J. Appl. Clin. Med. Phys. 14 (2013) 64-71. https://doi.org/10.1120/jacmp.v14i3.4126
  4. V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet, M. Sayarath, C. Fouillade, M.-F. Poupon, I. Brito, P. Hupe, J. Bourhis, J. Hall, J.-J. Fontaine, M.-C. Vozenin, Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice, Sci. Transl. Med. 6 (2014) 245ra93. https://doi.org/10.1126/scitranslmed.3008973
  5. M. Buonanno, V. Grilj, D.J. Brenner, Biological effects in normal cells exposed to FLASH dose rate protons, Radiother. Oncol. 139 (2019) 51-55. https://doi.org/10.1016/j.radonc.2019.02.009
  6. M. Bazalova-Cartera, N. Esplen, On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates, Med. Phys. 46 (2019) 5690-5695. https://doi.org/10.1002/mp.13858
  7. M.-C. Vozenin, J.H. Hendry, C.L. Limoli, Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken, Clin. Oncol. 31 (2019) 407-415. https://doi.org/10.1016/j.clon.2019.04.001
  8. J. Bourhis, W.J. Sozzi, P.G. Jorge, O. Gaide, C. Bailat, F. Duclos, D. Patin, M. Ozsahin, F. Bochud, J.-F. Germond, R. Moeckli, M.-C. Vozenin, Treatment of a first patient with FLASH-radiotherapy, Radiother. Oncol. 139 (2019) 18-22. https://doi.org/10.1016/j.radonc.2019.06.019
  9. J. Seco, F. Verhaegen, Monte Carlo Techniques in Radiation Therapy, CRC press, Boca Raton, 2013.
  10. H. Lim, Status of the DIRAMS C-band standing-wave accelerator for a radiotherapy machine, in: 9th Asia Forum for Accelerators and Detectors, Daejeon, Korea, Jan. 28-31, 2018.
  11. K.W. Jang, M. Lee, H. Lim, S.K. Kang, S.J. Lee, Y.M. Moon, J.Y. Kim, J.K. Kim, D.H. Jeong, Development of a wide dose-rate range electron beam irradiation system for pre-clinical study and multi-purpose applications using a research LINAC, Prog. Med. Phys. 31 (2020) 1-11. https://doi.org/10.14316/pmp.2020.31.1.1
  12. H. Lim, D.H. Jeong, K.W. Jang, S.K. Kang, H.C. Kim, S.H. Kim, D.E. Lee, K.H. Lee, S.J. Lee, M. Lee, Implementation of ultra-high dose-rate electron beam from 6-MeV C-band linear accelerator for preclinical study, J. Instrum. 15 (2020) P09013. https://doi.org/10.1088/1748-0221/15/09/P09013
  13. H. Lim, D. H. Jeong, M. Lee, M. J. Lee, S. W. Shin, J. Yi, Design of a radiotherapy machine using the 6-MeV C-band standing-wave accelerator, in: 7th International Particle Accelerator Conference, Busan, Korea, May 8-13, 2016.
  14. H. Lim, M. Lee, M.Y. Kim, J. Yi, M. Lee, S.K. Kang, D.J. Rhee, D.H. Jeong, Measurement of energy parameters for electron gun heater currents and output dose rate for electron beams from a prototype linac, Prog. Med. Phys. 27 (2016) 25-30. https://doi.org/10.14316/pmp.2016.27.1.25
  15. B. Lindskoug, A. Dahler, Collimating system for electron beams, Acta Radiol. 10 (1971) 454-463.
  16. K.W. Jang, M. Lee, H. Lim, S.K. Kang, S.J. Lee, S.H. Kim, D.E. Lee, H.C. Kim, D.H. Jeong, Monte Carlo simulation of an electron irradiation device for medical application of an electron linear accelerator, J. Kor. Phys. Soc. 76 (2020) 588-591. https://doi.org/10.3938/jkps.76.588
  17. H. Lim, D.E. Lee, M. Lee, S.W. Shin, J. Yi, D.H. Jeong, Beam-profile monitoring using the GAGG:Ce crystal for the 6 MeV electron accelerator, in: 21st International Conference on Accelerators and Beam Utilizations, Gyeongju, Korea, Nov. 15-17, 2017.
  18. M.R. Bieda, J.A. Antolak, K.R. Hogstrom, The effect of scattering foil parameters on electron-beam Monte Carlo calculations, Med. Phys. 28 (2001) 2027-2534.
  19. T. Pawlicki, D.J. Scanderberg, G. Starkschall, Hendee's Radiation Therapy Physics, fourth ed., John Wiley & Sons Inc., Hoboken, 2016.
  20. P. Andreo, D.T. Burns, K. Hohlfeld, M.S. Huq, T. Kanai, F. Laitano, V. Smyth, S. Vynckier, Absorbed Dose Determination in External Beam Radiotherapy: an International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, International Atomic Energy Agency, 2006, pp. 150-151. IAEA TRS-398.

Cited by

  1. Optical Filter-Embedded Fiber-Optic Radiation Sensor for Ultra-High Dose Rate Electron Beam Dosimetry vol.21, pp.17, 2021, https://doi.org/10.3390/s21175840
  2. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy vol.13, pp.19, 2021, https://doi.org/10.3390/cancers13194942