• Title/Summary/Keyword: scale-invariant measurability

Search Result 4, Processing Time 0.014 seconds

A VERSION OF A CONVERSE MEASURABILITY FOR WIENER SPACE IN THE ABSTRACT WIENER SPACE

  • Kim, Bong-Jin
    • The Pure and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 2000
  • Johnson and Skoug [Pacific J. Math. 83(1979), 157-176] introduced the concept of scale-invariant measurability in Wiener space. And the applied their results in the theory of the Feynman integral. A converse measurability theorem for Wiener space due to the $K{\ddot{o}}ehler$ and Yeh-Wiener space due to Skoug[Proc. Amer. Math. Soc 57(1976), 304-310] is one of the key concept to their discussion. In this paper, we will extend the results on converse measurability in Wiener space which Chang and Ryu[Proc. Amer. Math, Soc. 104(1998), 835-839] obtained to abstract Wiener space.

  • PDF

A FUBINI THEOREM FOR ANALYTIC FEYNMAN INTEGRALS WITH APPLICATIONS

  • Huffman, Timothy;Skoug, David;Storvick, David
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.409-420
    • /
    • 2001
  • In this paper we establish a Fubini theorem for various analytic Wiener and Feynman integrals. We then proceed to obtain several integration formulas as corollaries.

  • PDF

INTEGRATION FORMULAS INVOLVING FOURIER-FEYNMAN TRANSFORMS VIA A FUBINI THEOREM

  • Huffman, Timothy;Skoug, David;Storvick, David
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.421-435
    • /
    • 2001
  • In this paper we use a general Fubini theorem established in [13] to obtain several Feynman integration formulas involving analytic Fourier-Feynman transforms. Included in these formulas is a general Parseval's relation.

  • PDF