SCALE-INVARIANT MEASURABILITY IN YEH-WIENER SPACE

By Kun Soo Chang

1. Introduction

Let $R = \{(s,t) : a \le s \le b, \alpha \le t \le \beta\}$ and $C_2[R]$ be Yeh-Wiener space, i. e. $C_2[R] = \{x(\cdot, \cdot) : x(a,t) = x(s,\alpha) = 0, x(s,t) \text{ is continuous on } R\}$. $C_2[R]$ is often referred to as two parameter Wiener space. Let $a = s_0 < s_1 < \dots < s_m = b$ and $\alpha = t_0 < t_1 < \dots < t_n = \beta$ and let $-\infty \le a_{j,k} \le b_{j,k} \le +\infty$ be given for j = 1, 2, ..., m and $k = 1, 2, \ldots, n$. Let $E = (a_{11}, b_{11}] \times \dots \times (a_{mn}, b_{mn}]$. $I = J(G, f)(E) \equiv \{x \in C_2[R]; (x(s_1, t_1), \ldots, x(s_m, t_n)) \in E\}$ is called a strict interval of $C_2[R]$. If E is an arbitrary measurable subset of \mathbb{R}^{mn} , then I is called an interval of $C_2[R]$.

The collection \mathcal{G} of all such strict intervals form a semi-algebra of subsets of $C_2[R]$. The measure of the strict interval I is defined to be

$$m_1(I) = \int_{E} \omega(\vec{u} : \vec{s} : \vec{t}) d\vec{u},$$

where

$$\omega(\vec{u}:\vec{s}:\vec{t}) = \omega(u_{11}, ..., u_{mn}: s_1, ..., s_m: t_1, ..., t_n)$$

$$= \prod_{j=1}^{m} \prod_{k=1}^{n} \{ \pi(s_j - s_{j-1}) (t_k - t_{k-1}) \}^{-1/2}$$

$$\cdot \exp\left\{ \frac{-(u_{jk} - u_{j-1, k} - u_{j, k-1} + u_{j-1, k-1})^2}{(s_j - s_{j-1}) (t_k - t_{k-1})} \right\}$$

and $u_{0,k}=u_{j,0}=u_{0,0}=0$ for all j and k. This measure is countably additive on \mathcal{J} and can be extended in the usual way to the σ -algebra $\sigma(\mathcal{J})$ generated by the strict intervals and then can be further extended so as to be a complete measure. This completed measure space is denoted by $(C_2[R], \mathcal{U}_1, m_1)$ and \mathcal{U}_1 is called the class of Yeh-Wiener measurable sets.

For $x \in C_2[R]$, let $||x|| = \max_{(s,t) \in R} |x(s,t)|$. Then $(C_2[R], ||\cdot||)$ is a separable Banach space.

Let \mathcal{E} be the collection of all sets of the form $J_{(\vec{s},\vec{t})}$ (B) for all $(\vec{s};\vec{t})$ and all Borel set B in \mathbb{R}^{Ln} . Then \mathcal{E} is an algebra of subsets of $C_2[R]$. Let $\sigma(\mathcal{E})$ be the σ -agebra generated by \mathcal{E} and $\mathcal{E}(C_2[R])$ be the class of Borel sets in $C_2[R]$. Then it is well known that $\sigma(\mathcal{G}) = \sigma(\mathcal{E}) = \mathcal{E}(C_2[R])$. $\sigma(\mathcal{G})$ is

sometimes referred to as the σ -algebra of strictly Yeh-Wiener measurable sets.

Let σ_m be the partition:

$$\sigma_m = \{(s_j, t_k) : s_j = a + \frac{j(b-a)}{m}, t_k = \alpha + \frac{k(\beta-\alpha)}{m} : j, k=1, 2, ..., m\}.$$

For each $x \in C_2[R]$, let

$$S_{\sigma_m}(x) = \sum_{j=1}^m \sum_{k=1}^m \{x(s_j, t_k) - x(s_{j-1}, t_k) - x(s_j, t_{k-1}) + x(s_{j-1}, t_{k-1})\}^2.$$

For each $\lambda \ge 0$, let

$$\begin{split} &C_{\lambda} = \{x \in C_2[R] : \lim_{n \to \infty} S_{\sigma_{2^n}}(x) = \lambda^2 (b-a) \left(\beta - \alpha\right) / 2\} \\ &D = \{x \in C_2[R] : \lim_{n \to \infty} S_{\sigma_{2^n}}(x) \text{ fails to exist} \}. \end{split}$$

Note that $\nu C_{\lambda} = C_{\nu\lambda}$ for $\nu > 0$, $\lambda \ge 0$. Clearly $C_{\lambda}(\lambda \ge 0)$ and D are Borel sets and $C_{2}[R]$ is the disjoint union of this family of sets.

The key to our discussion is the following result due to Skoug [4].

THEOREM 1.1.
$$m_1(C_1) = 1$$
.

In §2 we will extend this result to partitions $\sigma_{h(n)}$ where h is an increasing function from N into N such that $n \le h(n)$ for all $n \in \mathbb{N}$.

DEFITIONS. A set $E \subseteq C_2[R]$ is said to be scale-invariant measurable if $\lambda E \in \mathcal{U}_1$ for every $\lambda > 0$. A scale-invariant measurable set N is called scale-invariant null if $m_1(\lambda N) = 0$ for every $\lambda > 0$. A property which holds except on a scale-invariant null set will be said to hold s-almost everywhere (denoted by s-a. e.).

In this paper we will extend the results on scale-invariant measurability in Wiener space which Johnson and Skoug obtained in [2] to Yeh-Wiener space. Many of the concepts, theorems and proofs will be much like analogous results in [2]. A number of the proofs will be omitted.

2. Preliminaries and Some Results in Yeh-Wiener Space

The following three propositions are well known results. We will state them without proof.

PROPOSITION 2.1. E is Lebesgue measurable in \mathbb{R}^{mn} iff $J_{(\vec{s},\vec{t})}(E)$ is Yeh-Wiener measurable. In this case,

$$m_1(J_{(\vec{s},\vec{t})}(E)) = \int_{E} \omega(\vec{u}:\vec{s}:\vec{t}) d\vec{u}.$$

PROPOSITION 2.2. Let $f(u_{11}, ..., u_{mn})$ be a Lebesgue measurable function on \mathbb{R}^{mn} and $F(x) = f(x(s_1, t_1), ..., \times (s_m, t_n))$. Then F is Yeh-Wiener measurable and

$$\int_{C_2[R]} F(x) dm_1(x) \stackrel{*}{=} \int_{\mathbf{R}^{mn}} f(\overrightarrow{u}) \omega(\overrightarrow{u} : \overrightarrow{s} : \overrightarrow{t}) d\overrightarrow{u}.$$

Note that actually F(x) is Yeh-Wiener measurable iff f is Lebesgue measurable.

PROPOSITON 2.3. (a) If E is Yeh-Wiener measurable, then -E is Yeh-Wiener measurable and $m_1E=m_1(-E)$.

(b)
$$\int_{C_2[R]} F(x) dm_1(x) = \int_{C_2[R]} F(-x) dm_1(x).$$

Since $\sigma(\mathcal{E}) = \mathcal{E}(C_2[R])$ we have that if E is a Borel set in \mathbb{R}^{mn} , then $J_{(\vec{s}, \vec{t})}(E)$ is a Borel set in $C_2[R]$. The following proposition shows the converse to this fact. First of all we state a simple lemma.

LEMMA 2.4. Given any real numbers u_{ij} , $0 \le i \le m$, $0 \le j \le n$, let udenote the matrix (u_{ij}) . Then there exists a piecewise linear continuous function H(u) on R such that $H(u)(s_i, t_j) = u_{ij}$; further, if $u_{ij}^{(k)} \to u_{ij}$ as $k \to \infty$ for $0 \le i \le m$, $0 \le j \le n$, $H(u^{(k)}) \to H(u)$ uniformly on R.

PROPOSITION 2.5. If $J_{(\vec{s},\vec{t})}(E)$ is a Borel set in $C_2[R]$, then E is a Borel set in R^{mn} .

Proof. Define H on \mathbb{R}^{mn} as in Lemma 2.4 so that H(u)(s,t)=0 if s=a or t=a. Such an H is a continuous (and hence Borel) function from \mathbb{R}^{mn} to $C_2[R]$. Now $X_E(u)=(X_{J(\vec{s},\ \vec{t})(E)}\circ H)(u)$ since $u\in E$ iff $H(u)\in J_{(\vec{s},\ \vec{t})}(E)$. Suppose $J_{(\vec{s},\ \vec{t})}(E)$ is a Borel set in $C_2[R]$. Then $X_E=X_{J(\vec{s},\ \vec{t})(E)}\circ H$ is a Borel function since it is the composition of two Borel functions. Hence E is a Borel subset of \mathbb{R}^{mn} .

PROPOSITION 2.6. Let $h: N \to N$ be an increasing function such that $n \le h(n)$ for all $n \in N$. Let

$$C_{\lambda}^{h} = \left\{ x \in C_{2}[R] : \lim_{n \to \infty} S_{\sigma}(x) = \lambda^{2}(b-a) (\beta - \alpha)/2 \right\}.$$

Then $m_1(C_1^h) = 1$.

Proof. Skoug [4, Proof of Lemma 1] showed that

$$\int_{C_2[R]} \{ S_{\sigma_h(n)}(x) - (b-a) (\beta-\alpha)/2 \}^2 dx$$

$$= 1/2 \{ (b-a) (\beta-\alpha)/h(n) \}^2.$$

Let
$$E_n = \{x : |S_{\sigma h(n)}(x) - (b-a)(\beta-\alpha)/2| \ge \frac{\log n}{\sqrt{2n}}(b-a)(\beta-\alpha)\}.$$

$$\begin{split} 1/2 \Big\{ & \frac{(b-a) \, (\beta - \alpha)}{h(n) \}} \Big\}^2 = & \int_{C_2 \, [R]} \Big\{ S_{\sigma_{h(n)}}(x) - \frac{(b-a) \, (\beta - \alpha)}{2} \Big\}^2 dx \\ & \geq & \int_{E_n} \Big\{ S_{\sigma_{h(n)}}(x) - \frac{(b-a) \, (\beta - \alpha)}{2} \Big\}^2 dx \\ & \geq & \frac{(\log n)^2}{2n} (b-a)^2 (\beta - \alpha)^2 \cdot m_1(E_n). \end{split}$$

Hence
$$m_1(E_n) \le \frac{n}{[h(n) \log n]^2} \le \frac{1}{n(\log n)^2}$$
.

Let
$$F_n = \bigcup_{k=n}^{\infty} E_k$$
 and $F = \bigcap_{n=1}^{\infty} F_n$. Then

$$m_1(F) \le m_1(F_n) \le \sum_{k=n}^{\infty} m_1(E_k) \le \sum_{k=n}^{\infty} \frac{1}{k(\log k)^2} \to 0$$
 as $n \to \infty$.

So $m_1(F) = 0$. But for $x \notin F$, i. e. for $x \notin E_k$ for all $k \ge n$ and for some n, $\left| S_{\sigma_{k(k)}}(x) - \frac{(b-a)(\beta-\alpha)}{2} \right| < \frac{\log k}{\sqrt{2k}}(b-a)(\beta-\alpha) \text{ for all } k \ge n.$

Hence
$$\lim_{k\to\infty} \left| S_{\sigma_{b(k)}}(x) - \frac{(b-a)(\beta-\alpha)}{2} \right| \leq \lim_{k\to\infty} \frac{\log k}{\sqrt{2k}} (b-a)(\beta-\alpha) = 0.$$

This implies that
$$\lim_{k\to\infty} S_{\sigma_{h(k)}}(x) = \frac{(b-a)(\beta-\alpha)}{2}$$
 for $x \in F$. But $m_1(F) = 0$.

3. Scale-Invariant Measurable Sets in Yeh-Wiener Space

Let m_{λ} be the Borel measure given by $m_{\lambda}(B) = m_1(\lambda^{-1}B)$ for $B \in \mathcal{E}(C_2[R])$. Since $\lambda^{-1}C_{\lambda} = C_1$, $m_{\lambda}(C_{\lambda}) = m_1(C_1) = 1$ by Theorem 1.1.

Let \mathcal{U}_{λ} denote the σ -algebra obtained by completing $(C_2[R], \mathcal{E}(C_2[R], m_{\lambda})$ and let \mathcal{U}_{λ} be the class of m_{λ} -null sets. Note that every subset of $C_2[R] \setminus C_{\lambda}$ is in \mathcal{U}_{λ} . Let \mathcal{U} and \mathcal{U} be the class of scale-invariant measurable sets and scale-invariant null sets, respectively.

PROPOSITION 3.1. (i) N is in \mathcal{U}_{λ} iff $\lambda^{-1}N$ is in \mathcal{U}_{1} ; equivalently, $\mathcal{U}_{\lambda} = \lambda \mathcal{U}_{1}$.

- (ii) E is in \mathcal{Y}_{λ} iff $\lambda^{-1}E$ is in \mathcal{Y}_{1} ; equivalently, $\mathcal{Y}_{\lambda} = \lambda \mathcal{Y}_{1}$.
- (iii) $m_{\lambda}(E) = m_1(\lambda^{-1}E)$ for E in \mathcal{U}_{λ} .

Proof. (i) Let N be in \mathcal{U}_{λ} . Then $N \subset M$ where M is an m_{λ} -null Borel set. Hence $m_1(\lambda^{-1}M) = m_{\lambda}M = 0$ and so $\lambda^{-1}M$ is an m_1 -null Borel set. But then $\lambda^{-1}N \subset \lambda^{-1}M$ is in \mathcal{U}_1 . The converse can be shown in essentially the same way.

- (ii) Let E be in \mathcal{U}_{λ} . Then $E=B\cup N$ where B is in $\mathcal{E}(C_2[R])$ and N is in \mathcal{U}_{λ} . Then $\lambda^{-1}N$ is in \mathcal{U}_1 by (i) and so $\lambda^{-1}E=\lambda^{-1}B\cup\lambda^{-1}N$ is in \mathcal{U}_1 . The rest of (ii) is easily checked.
- (iii) Let E be in \mathcal{U}_{λ} . Then $E=B\cup M$ where B is in $\mathcal{E}(C_2[R])$ and N is m_1 -null. Then

$$m_{\lambda}(E) = m_{\lambda}(B \cup N) = m_{\lambda}(B) = m_{\lambda}(\lambda^{-1}B) = m_{\lambda}(\lambda^{-1}B \cup \lambda^{-1}N) = m_{\lambda}(\lambda^{-1}E).$$

PROPOSITION 3.2. $\mathcal{Y} = \bigcap_{k>0} \mathcal{Y}_{\lambda}$; $\mathcal{H} = \bigcup_{k>0} \mathcal{H}_{\lambda}$; \mathcal{Y} is a σ -algebra of subsets of $C_2[R]$.

REMARK. Beginning with this proposition, most of the proofs in the rest of this section are much like the proofs of corresponding results in [2]. We will include a few of these proofs but will omit most of them.

PROPOSITION 3.3. (i) E is in \mathcal{U} iff $E \cap C_{\lambda}$ is in \mathcal{U}_{λ} for every $\lambda > 0$.

(ii) E is in \mathcal{H} iff $E \cap C_{\lambda}$ is in \mathcal{H}_{λ} for every $\lambda > 0$.

The next theorem is quite simple. But it gives a very useful characterization of \mathcal{U} and \mathcal{U} in that it shows rather well what scale-invariant measurable sets and scale-invariant null sets are really like and how they compare to Yeh-Wiener measurable sets and Yeh-Wiener null sets respectively.

THEOREM 3.4. (i) E is in 4 iff E has the form

$$(3.1) E = (\bigcup_{\lambda \leq 0} E_{\lambda}) \cup L,$$

where each E_{λ} is an m_{λ} -measurable subset of C_{λ} and L is an arbitrary subset of $C_0 \cup D$. Further, for E written in this manner, $m_{\lambda}(E) = m_{\lambda}(E_{\lambda})$ for all $\lambda > 0$.

(ii) N is in W iff N has the form

$$(3.2) N = (\bigcup_{\lambda>0} N_{\lambda}) \cup L,$$

where each N_{λ} is an m_{λ} -null subset of C_{λ} and L is an arbitrary subset of $C_0 \cup D$.

REMARK. The preceding theorem shows that there are many more Yeh-Wiener measurable sets than scale-invariant measurable sets: A set E is Yeh-Wiener measurable if and only if it has the form $E_1 \cup L$ where E_1 is an m_1 -measurable subset of C_1 and L is an arbitrary subset of $(\bigcup_{0 \le l \ne 1} C_l) \cup D \cup C_l$

 C_0 . Similarly a set is Yeh-Wiener null if and only if it has the form $N_1 \cup L$ where N_1 is an m_1 -null subset of C_1 and L is an arbitrary subset of $(\bigcup_{0 \le l \ne 1} C_l) \cup D \cup C_0$.

Let $a=s_0 < s_1 < ... < s_m=b$, $\alpha=t_0 < t_1 < ... < t_n=S$ and let E be any subset of \mathbb{R}^{mn} . Let

$$(3.3) Q=J_{(\vec{s},\vec{t})}(E)=\{x\in C_2[R]: (x(s_1,t_1),...,x(s_m,t_n))\in E\}.$$

We have seen, in § 2, that E is Borel measurable in \mathbb{R}^{mn} if and only if Q is Borel measurable in $C_2[R]$ and that E is Lebesgue measurable in \mathbb{R}^{mn} if and only if Q is Yeh-Wiener measurable [3]. It is easy to see that such sets Q are scale-invariant measurable, since for any $\lambda > 0$,

$$\lambda Q = \{x \in C_2[R] : (x(s_1, t_1), ..., x(s_m, t_n)) \in \lambda^{-1}E\}$$

is Yeh-Wiener measurable.

Proposition 3.5. For every $\lambda_0 > 0$, $\mathcal{E}(C_2[R]) \subseteq \mathcal{U} \subseteq \mathcal{U}_{\lambda_0}$.

The following result of Skoug [4] becomes rather transparent using Theorem 3.4.

COROLLARY 3.6. Let f be any function with domain $(0, \infty)$ and satisfying $0 \le f(\lambda) \le 1$. Then there exists E in 4 such that $m_1(\lambda E) = f(\lambda)$ for all $\lambda > 0$.

Proof. For each $\lambda > 0$, pick $E_{\lambda} \subset C_{\lambda}$ such that E_{λ} is in \mathcal{Y}_{λ} and $m_{\lambda}(E_{\lambda}) = f(\lambda^{-1})$. (Such E_{λ} exists by the following lemma.) Then $E = \bigcup_{\lambda>0} E_{\lambda}$ is the desired set since, by Proposition 3.1 and Theorem 3.4, we have $m_1(\lambda E) = m_{\lambda-1}(E) =$ $m_{\lambda-1}(E_{\lambda-1})=f(\lambda).$

LEMMA. Given $\gamma \in [0, 1]$, there exists $E_{\lambda} \subset C_{\lambda}$ such that $E_{\lambda} \in \mathcal{Y}_{\lambda}$ and $m_{\lambda}(E_{\lambda}) = \gamma$ for each $\lambda > 0$.

Proof. Given
$$\gamma \in [0, 1]$$
, there exists a real number a_{γ} such that.
$$\frac{1}{\sqrt{\pi(b-a)(\beta-\alpha)}} \int_{-\infty}^{a_{\gamma}} e^{-\frac{u^2}{(b-a)(\beta-\alpha)}} du = \gamma.$$

Let $E = \{x \in C_2[R] : -\infty < x(b, \beta) \le a_r\}$. Then E is in \mathcal{Y}_1 and $m_1(E) = \gamma$. Let $E_1=E\cap C_1$. Then $E_1\in \mathcal{Y}_1$ and $m_1(E_1)=m_1(E)=\gamma$. Let $E_\lambda=\lambda E_1$. Then E_{λ} is in ψ_{λ} and $E_{\lambda} \subset \lambda C_1 = C_{\lambda}$ and $m_{\lambda}(E_b) = m_{\lambda}(\lambda E_1) = m_1(E_1) = \gamma$.

Our sets C_{λ} , $\lambda \ge 0$ and D depend on the particular sequence of partitions on R that we choose. If $\sigma_{h_{(n)}}$ denotes another sequence of partitions, we may let

and
$$C_{\lambda}^{h} = \{x \in C_{2}[R] : \lim_{n \to \infty} S_{\sigma}(x) = \lambda^{2}(b-a)(\beta-\alpha)/2\}$$
$$D^{h} = \{x \in C_{2}[R] : \lim_{n \to \infty} S_{\sigma}(x) \text{ fails to exist}\}.$$

Essentially because of Proposition 2.6, all of the results obtained up to this point, with changes in notation where appropriate, go through. Note, however, that ψ_{λ} , \mathcal{U}_{λ} , m_{λ} , ψ and \mathcal{U} are all independent of the sequence of partitions. A set E in \mathcal{Y} now has two decompositions according to the two versions of Theorem 3.4:

$$(3.4) E = (\bigcup_{k>0} E_{\lambda}) \cup L = (\bigcup_{k>0} E_{\lambda}^{h}) \cup L^{h}$$

where $E_{\lambda}{}^{h}=E\cap C_{\lambda}{}^{h}$ and $L^{h}=E\cap (C_{0}{}^{h}\cup D^{h})$. How do these two decompositions relate to one another? The next proposition shows that they agree up to a scale-invariant null set.

Proposition 3.7. The two decompositions of E given by (3.4) have the property that the set

$$(3.5) \qquad \qquad (\bigcup_{\lambda > 0} E_{\lambda} \Delta E_{\lambda}^{h}) \cup (L \Delta L^{h})$$

is scale-invariant null.

Proof. First note that for all $\lambda > 0$

$$m_{\lambda}(E_{\lambda}\backslash E_{\lambda}^{h}) = m_{\lambda} [(E \cap C_{\lambda}) \backslash (E \cap C_{\lambda}^{h})]$$

$$= m_{\lambda} [E_{\lambda} \cap (C_{\lambda}\backslash C_{\lambda}^{h})]$$

$$\leq m_{\lambda}(C_{\lambda}\backslash C_{\lambda}^{h})$$

$$\leq m_{\lambda}(C_{2}\lceil R \rceil \backslash C_{\lambda}^{h}) = 0.$$

Thus by Theorem 3.4, the set $\bigcup_{\lambda>0} (E_{\lambda} \setminus E_{\lambda}^{h}) \cup (L \setminus L^{h})$ is scale-invariant null. In similar fashion one cans how that the set $\bigcup_{\lambda>0} (E_{\lambda}^{h} \setminus E_{\lambda}) \cup (L^{h} \setminus L)$ is scale-invariant null which concludes the proof since

$$\bigcup_{\lambda>0} (E_{\lambda} \Delta E_{\lambda}^{h}) \cup (L \Delta L^{h}) = \{\bigcup_{\lambda>0} (E_{\lambda} \setminus E_{\lambda}^{h}) \cup (L \setminus L^{h})\} \cup \{\bigcup_{\lambda>0} (E_{\lambda}^{h} \setminus E_{\lambda}) \cup (L^{h} \setminus L)\}.$$

This paper is based on Chapter 2 of the author's Ph. D. Thesis [1] written at the University of Nebraska under the direction of Professor Gerald W. Johnson.

References

- 1. Kun S. Chang, Scale-invariant measurability in function spaces, Thesis, University of Nebraska, Lincoln, Neb., 1979.
- 2. G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. of Math., 83 (1979), 157-176.
- 3. D.L. Skoug, Converse measurability theorems for Yeh-Wiener space, Proc. Amer. Math. Soc., 57 (1976), 304-310.
- 4. ____. The change of scale and translation pathology in Yeh-Wiener space, Riv. Mat. Univ. Parma, 3(1977), 79-87.
- 5. J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc., 95(1960), 433-450.

Yonsei University