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SCALE-INVARIANT MEASURABILITY
IN YEH-WIENER SPACE

By KUN 800 CHANG

1. Introduction

Let R= {(s,t) : a'5:,s'5:,b,a-s;,ts/3} and C2[R] be Yeh-Wiener space, i.e.
C2[R] = {x(·, .): x(a,t)=x(s, a) =0, x(s, t) is continuous onR}. C2[R]

is often referred to as two parameter Wiener space. Let a=sO<sl<···<Sm=
band a=tO<tl<···<t,,=/3 and let -oo'5:,aj,k'5:,bj .k'5:,+oo be given for j=l,
2, ..., mandk=l, 2, "', n. LetE=(all' bll]X .•• X(am", bm,,]. !=J(u,I)(E)
=={xEC2[R] ; (X(Sh tl), "', X(sm, t,,»EE} is called a strict interval of
C2 [R]. If E is an arbitrary measurable subset of Rm", then I is called an
interval of C2[R].

The collection !J. of all such strict intervals form a semi-algebra of subsets
of C2[R]. The measure of the strict interval! is defined to be

ml (1) =f#(; : s : t)du,

where
W(; : s: t) =W(Ull' ... , Um" : Sh ••• , Sm : th ••. , t,,)

... ..
=IT IT {IT(Sj-Sj-l)(tk-tk-I)}-1I2

j=l k=l

{
- (Ujk-Uj-l k-Uj k-l+Uj-l,k-l)2 }'exp . ,

(Sj-Sj-l) (tk-tk-I)
and UO.k=Uj,O=uo.o=O for all j and k. This measure is countably additive
on IJ. and can be extended in the usual way to the o-algebra 0(IJ.) generated
by the strict intervals and then can be further extended so as to be a
complete measure. This completed measure space is denoted by (C2 [R] , flJh ml)
and flJl is called the class of Yeh-Wiener measurable sets.

For xEC2[R], let IIxll=maxlx(s,t) I. Then (C2[R] , 11·11) is a separable
(s.IlER

Banach space.
Let & be the collection of all sets of the form J(i, n (B) for all (s; t)

and all Borel set B in RL". Then & is an algebra of subsets of C2 [R]. Let
(l(&) be the (l-agebra generated by & and &(C2 [R]) be the class of Borel
sets in C2 [R]. Then it is well known that (l(IJ.) =0(&) =&(C2 [R]). 0(IJ.) is
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sometimes referred to as the O"-algebra of strictly Yeh-Wiener measurable
sets.

Let (}'m be the partition:
j(b-a) k(f3-a) }O"m= {(Sj, tk) : Sj=a+ , tk=a+ : j, k=l, 2, ... , m .

m m
For each xEC2 [R], let

Sum (x) = t t {x(Sj, tk) -X(Sj-h t,.) -X (Sj, tk-l) +X(Sj-h tk-l) p.
i=l k=l

For each ;t~o, let

C,,= {xEC2 [R] : limSu (x)=;t2(b-a) CB-a)!2}
#-00 271

D= {xEC2[R] : lim Sq (x) fails to exist}.
11;-00 2n

Note that ))C"=Cv,, for ))>0, A~O. Clearly C,,(A~O) and Dare Borel sets
and C2 [R] is the disjoint union of this family of sets.

The key to our discussion is the following result due to Skoug [4J.

THEOREM 1. 1.

In § 2 we will extend this result to partitions O"hCn) where h is an increasing
function from N into N such that n~h(n) for all nEN.

DEFITIONS. A set E~C2[R] is said to be scale-invariant measurable if AE
E1II for every ;t>0. A scale-invariant measurable set N is called scale­
invariant null if ml (AN) = 0 for every ;t>0. A property which holds except
on a scale-invariant null set will be said to hold s-almost everywhere (denoted
by s-a. e.).

In this paper we will extend the results on scale-invariant measurability in
Wiener space which Johnson and Skoug obtained in [2J to Yeh-Wiener
space. Many of the concepts, theorems and proofs will be much like
analogous results in [2J. A number of the proofs will be omitted.

2. Preliminaries and Some Results in Yeh-Wiener Space

The following three propositions are well known results. We will state
them without proof.

PROPOSITION 2.1. E is Lebesgue measurable in Rmn iff Jcs,n (E) is Yeh­
Wiener measurable. In this case,

ml(JCs,D (E» =f.EW(i7 : -; : t)dli.
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PROPOSITION 2.2. Let f(un, .••, umn) be a Lebesgue measurable function on
Rmn and F(x) = f(x(sh t1), "', X (sm, tn». Then F is Yeh- Wiener measurable
and

*J F(x)dm1(x)=SRmnfCii)w(ii: s: t)du.
C2[RJ

Note that actually F(x) is Yeh-Wiener measurable iff f is Lebesgue
measurable.

PROPOSITON 2.3. (a) If E is Yeh- Wiener measurable, then -E is Yeh- Wiener
measurable and m1E=m1( -E).

(b) f F(x)dm1(x)=S F(-X) dm1(X).
C2[RJ C2[R]

Since a(£) =£(C2[R]) we have that if E is a Borel set in Rmn, then Jes.
"() (E) is a Borel set in C2[R]. The following proposition shows the converse
to this fact. First of all we state a simple lemma.

LEMMA 2. 4. Given any real numbers Uij, 0~ i~m, 0~ j ~ n, let udenote the
matrix (Uij). Then there exists a piecewise linear continuous function H(u) on
R such that H(u) (Si, t) =Uij; further, if Ui/k)~ Uij as k ~ 00 for O~i~m,
O~j~n, H(u(k) ~ H(u) uniformly on R.

PROPOSITION 2.5. If Jes."{) (E) is a Borel set in C2[R], then E is a Borel set
in Rmn.

Proof. Define H on Rmn as in Lemma 2.4 so that H(u) (s, t) =0 if s=a or
t=a. Such an H is a continuous (and hence Borel) function from Rmn to
C2[RJ. Now XE(u) = (XJ(s. tHE)oH) (u) since uEE iff H(u) EJ(s. f) (E).
Suppose J(s. "() (E) is a BoreI set in C2 [R]. Then XE=XJ(s. tHE) oH is a
BoreI function since it is the composition of two Bore! functions. Hence E
is a Borel subset of Rmn.

PROPOSITION 2.6. Let h : N ~ N be an increasing function such that n~h(n)

for all nEN. Let
Ci= {xEC2[RJ : !im Sq (x) =A2(b-aH.8-a) /2}.

n-oo hen)

Then m1(C1h)=1.

Proof. Skoug [4, Proof of Lemma 1J showed that

SC2[R] {Sqh(n) (x) - (b-a) (.8-a) /2} 2dx

=l!2{(b-a) (.8-a)/h(n)}2.

Let En= {x : IS"h(n) (x) - (b-a) (.8-a) /21 ~ l~y n (b-a)(.8-a)}.
v2n
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l/2{ (b-rj)(f3--: a ) }2=i {Sq (x)- (b-a)(f3-a) }2dx
h (n)} C2 [R] hen) 2

~J {Sq (x) - (b-a) (f3-a) }2dx
En h(n) 2

~ (10~nn)2 (b-a)2(f3-a)2. ml (En).

Hence ml (En) :::::; n < 1
[hen) logn]2 - n(1ogn)2

00 00

Let Fn= U E k and F= n Fn• Then
k=n n=l

00 00 1
ml (F) :::::;ml (Fn):::::; f ml(Ek):::::; k~ k(1og k)2 - 0 as n - 00.

So ml (F) =0. But for x$F, i. e. for x$Ek for all k~n and for some n,

ISqh(k) (x) - (b-a)~f3-a) 1< l~~: (b-a) (f3-a) for all k~n.

Hence lim\Sq (x) (b-a)i
f3

-
a

) I:::::;lim l~~: (b-a) (f3-a) = O.
k-oo h(k) k_oo

This implies that Hm Sq (x)= (b-a)2(f3- a ) for x$F. But ml(F) =0.
k-oo h(k)

3. Scale-Invariant Measurable Sets in Yeh-Wiener Space

Let m A be the Borel measure givenbymA(B)~ml().-lB) forBE£(C2[R]).
Since ).-lCA=Ch mA(CA) =ml(Cl) =1 by Theorem 1.1.

Let 111. denote the a-algebra obtained by completing (C2[R], £(C2[R], mA)
and let fJtA be the class of mrnull sets. Note that every subset of C2[R]\CA
is in fJtA. Let 11 and fJt be the class of scale-invariant measurable sets and
scale-invariant null sets, respectively.

PROPOSITION 3.1. (i) N is in fJtA iff .I.-IN is in fJtl ; equivalently, fJtA=).fJtl .
(ii) E is in 111. iff .I.-lE is in 111; equivalently, 1IA=)'1h.
(iii) mA(E) =ml (.I.-lE) for E in 111.'

Proof. (i) Let N be in fJtA. Then NcM where M is an m..-null Borel set.
Hence ml ().-lM) =mAM=O and so ).-lM is an mcnull Borel set. But then
).-lNc).-lM is in fJtl. The converse tan be shown in essentially the same
way.

(ii) Let E be in 111.. Then E=B UN where B is in £(C2[R]) and N is
in fJtA. Then .I.-IN is in fJtl by (i) and so ).-lE=).-lB UA.-IN is in 111. The
rest of (ii) is easily checked.

(iii) Let E be in 111.. Then E=B UM where B is in £(C2[R]) and N is
m..-null. Then

mA(E) =mA(B UN) =mA(B) =ml (A-lE) =ml ().-lB U.I.-IN) =ml (.I.-lE).
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THEOREM 3. 4. (i)

(3.1)

1ft iff N has the form

N=(UNl ) UL,
1>0

PROPOSITION 3.2. fJI= nfJI,l; flt= Uflt,l; 11 is a q-algebra of subsets of C2 [RJ.
1>0 1>0

REMARK. Beginning with this proposition, most of the proofs in the rest of
this section are much like the proofs of corresponding results in [2J. We
will include a few of these proofs but will omit most of them.

PROPOSITION 3.3. (i) E is in fJI iff En C,l is in fJI,l for every A>O.
(ii) E is in flt iff En C,l is in flt,l for every ;/>0.

The next theorem is quite simple. But it gives a very useful characteriza­
tion of fJI and flt in that it shows rather well what scale-invariant measurable
sets and scale-invariant null sets are really like and how they compare to
Yeh-Wiener measurable sets and Yeh-Wiener null sets respectively.

E is in 11 iff E has the form

E= (UE,l) UL,
1<0

where each El is an mrmeasurable subset of Cl and L is an arbitrary subset
of Co UD. Further, for E written in this manner, ml (E) =ml (El) for all
;/>0.

(ii) N is in

(3.2)

where each N l is an mrnull subset of Cl and L is an arbitrary subset of

CoUD.

REMARK. The preceeding theorem shows that there are many more Yeh­
Wiener measurable sets than scale-invariant measurable sets: A set E is
Yeh-Wiener measurable if and only if it has the form El UL where El is
an mcmeasurable subset of Cl and L is an arbitrary subset of (U Cl) U D U

0<1;01

Co. Similarly a set is Yeh-Wiener null if and only if it has the form
NI UL where NI is an mcnull subset of Cl and L is an arbitrary subset of
(U Cl) UDUCo·
0<#1

Let a=so<sl<... <sm=b, a=tO<tl<... <tn=S and let E be any subset of
Rmn. Let

(3.3) Q=J(s, 1) (E) = {xEC2[RJ : (X(Sh tl), .•. , x (sm, tn»EE}.

We have seen, in § 2, that E is Borel measurable in Rmn if and only if Q
is Borel measurable in C2 [RJ and that E is Lebesgue measurable in Rmn if
and only if Q is Yeh-Wiener measurable [3J. It is easy to see that such
sets Q are scale-invariant measurable, since for any A>O,

;/Q= {xEC2 [RJ : (x(sJ, tl), ... , x(sm, tn» E il-IE}
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is Yeh-Wiener measurable.
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PROPOSITION 3.5. For every 20>0, tfl,(C2 [RJ) c1/c1/;.o'
* *

The following result of Skoug [4J becomes rather transparent using
Theorem 3. 4.

CoROLLARY 3.6. Let f be any function with domain (0, 00) and satisfying
O~f(2) ~ 1. Then there exists E in 1/ such that ml (lE) f(2) for all 2>0.

Proof. For each 2>0, pick E;.cC;. such that EJ. is in (jJ;. and m;. (EJ.) ~f(2-1).
(Such E;. exists by the following lemma.) Then E= UEl is the desired set

.>0

since, by Proposition 3. 1 and Theorem 3. 4, we have ml (2E) = m;'-I (E) =

ml-I (El-I) -fo.).

LEMMA. Given rE [0, 1J, there exists ElcC). such that E).E.(jJ;. and m). (E;.) =r
for each 2>0.

Proof. Given rE [0,1], there exists a real number ar such that.
1 far u2

v7r(b-a) (/3-a) _ooe- (b-a) (/3-a) du=r·

Let E= {XEC2 [RJ : - 00 <x(b, f3) ~ar}' Then E is in rtjl and ml (E) =r.
Let EI=EnCI. Then E1Ertjl an9. ml(EI) =ml(E) =r. Let E).=AE1. Then
E). is in rtj;. and E;.CAC1=C;. and ml(Eb)=m;.(AEI)=ml(EI)=r.

Our sets C;., A:2°and D depend on the particular sequence of partitions
on R that we choose. If O"hCn) denotes another sequence of partitions, we
may let

Ci= {xEC2 [R] : Hm Sq (x) =22 (b-a)(/3-a) /2}
and ,,_00 h(n)

Dh= {xEC2 [RJ : Hm Sq (x)fails to exist}.
n_oo ben)

Essentially because of Proposition 2. 6, all of the results obtained up to
this point, with changes in notation where appropriate, go through. Note,
however, that rtj;., rtt;., m;., rtj and rtt are all independent of the sequence of
partitions. A set E in rtj now has two decompositions according to the two
versions of Theorem 3. 4:

(3.4) E=(UEl ) UL=(UE}) ULk
l>O DO

where E;.k=E nClk and Lk=E n (Coh UDh). How do these two decompositions
relate to one another? The next proposition shows that they agree up to a
scale-invariant null set.

PROPOSITION 3.7. The two decompositions of E given by C3.4) have the
property that the set
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(3.5)

is scale-invariant null.

Proof. First note that for all ':<>0
m), (E),\E),h) =m),[(E nc),) \ (E nCi)]

=m),[E), n (c),\Ci)]
<s'm),(C),\Ci)
<s'm),(C2 [R]\c),h) =0.

Thus by Theorem 3.4, the set U (E),\E),h) U (L\Lh) is scale-invariant null.
.1>0

In similar fashion one cans how that the set U (E),h\E),) U (Lh\L) is scale-
.1>0

invariant null which concludes the proof since
U (E),LlEi) U (LLlLh) = {U (E),\Ei) U (L\Lh)} U {U (E),h\E),) U (Lh\L)}.

bO bO bO

This paper is based on Chapter 2 of the author's Ph. D. Thesis [IJ
written at the University of Nebraska under the direction of Professor GeraId
W. ]ohnson.
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