61

J. Korean Math. Soc.
Vol. 19, No.1, 1982

SCALE-INVARIANT MEASURABILITY
IN YEH-WIENER SPACE

By KuN Soo CHANG

1. Introduction

Let R={(s,¢) : a<s<b,a<t<p} and C,[R] be Yeh-Wiener space, i.e.

Co[R]={zx(-, *) : z(a,t) =2(s, @) =0, z(s, ) is continuous on R}. C,[R]
is often referred to as two parameter Wiener space. Let a=sy<ls;<l---<sp=
b and a=ty<t;<--+<t,=f and let —o0<a; ;<b; <+ be given for j=1,
2, ceay M and k=1, 2, cesy N Let E= (du, bu]X...X(dm,,, bm,,]. I‘——"J((j’,?) (E)
={z€C,[R]; (x(s1, t1) wery (s, t,))EE} is called a strict interval of
C, [R]. If E is an arbitrary measurable subset of R™*, then I is called an
interval of C,[R].

The collection & of all such strict intervals form a semi-algebra of subsets
of C,[R]. The measure of the strict interval I is defined to be

ml(z)zjm;z .5 F)da,
where
w(u 5 2 )=w(1y, cury Upp ' Sty oves S ° Ely oeny y)

=;II1 T U (s5—5j-1) @p—t-1)} V2

) — (wjp—ttj-1,3 — 0, 4-1F8j-1,4-1) 2 }

exe| (s5=s55-1) Ga—ta-1)

and up ;=u; ¢=upo=0 for all j and % This measure is countably additive

on 4 and can be extended in the usual way to the o-algebra o(4) generated

by the strict intervals and then can be further extended so as to be a

complete measure. This completed measure space is denoted by (C,[R], %, m;)

and %; is called the class of Yeh-Wiener measurable sets. ‘
For zC,[R], let |{x||=(fltl)a6§|x(s, t) |. Then (C,[R], ||-]]) is a separable

Banach space.

Let & be the collection of all sets of the form Jz 7 (B) for all (s;7¢)
and all Borel set B in RZ", Then & is an algebra of subsets of C,[R]. Let
o(R) be the o-agebra generated by & and &(C,[R]) be the class of Borel
sets in C,[R]. Then it is well known that ¢(9) =0 (&) =&(C,[R]). ¢(9) is
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sometimes referred to as the o-algebra of strictly Yeh~Wiener measurable

sets.
Let ¢, be the partition:

om=1{(s3, 25) :sj=a+L5;—€’l , ty=at k_(@fl iy k=1, 2, ey m).
For each z&Co[R], let
S, (2) =]_Z:1 él{x(sj: tp) —x(sj-1, tg) —z(sj, tp-1) tx(sj-1, tp-1)}2

For each 1>0, let

C;={z=Cy[R] : Ii_{:g S, n(:c)—:).z(b—a) (B—a)/2}
D={zeC,[R] : Ii_xg S, "(x) fails to exist}.

Note that vC;=C,, for >0, A=>0. Clearly C;(A>0) and D are Borel sets
and C,[R] is the disjoint union of this family of sets.
The key to our discussion is the following result due to Skoug [4].

THEOREM 1. 1. m(C)=1.

In §2 we will extend this result to partitions ¢, where & is an increasing
function from N into N such that z<k(z) for all z&N.

DEFITIONS. A set ECC,[R] is said to be scale-invariant measurable if 1E
€, for every A>0. A scale-invariant measurable set N is called scale—
invariant null if m; (AN)=0 for every A>0. A property which holds except
on a scale-invariant null set will be said to hold s—almost everywhere (denoted
by s-a.e.).

In this paper we will extend the results on scale-invariant measurability in
Wiener space which Jobhnson and Skoug obtained in [2] to Yeh-Wiener
space. Many of the concepts, theorems and proofs will be much like
analogous results in [2]. A number of the proofs will be omitted.

2. Preliminaries and Some Results in Yeh-Wiener Space

The following three propositions are well known results. We will state
them without proof.

PROPOSITION 2.1. E is Lebesgue measurable in R™ iff Jig 5 (E) is Yeh-
Wiener measurable. In this case,

my (T (E)) = jEwGi T D)da
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PROPOSITION 2.2. Let f(uyy, vy #p,) be a Lebesgue measurable function on
R7* and F(x)=f(x(s1,21), eoey X (Smsty)). Then F is Yeh—Wiener measurable

and
* -~ e — -_—
Jcmu F(z)dm (2) =JRmn f@)o@ 5 :¢)du.

Note that actually F(z) is Yeh-Wiener measurable iff f is Lebesgue
meastrable.

PrROPOSITON 2.8. () If E is Yeh—Wiener measurable, then —E is Yeh—~Wiener
measurable and mE=m,(—E).

(b) ch[m F(z)dm,(z) =ch [R]F( —z)dm;(z).

Since ¢ (&) =A&(C,[R]) we have that if E is a Borel set in R™?, then Jg,
7 (E) is a Borel set in C,[R]. The following proposition shows the converse
to this fact. First of all we state a simple lemma.

LEMMA 2.4. Given any real numbers u;;, 0<i<m, 0<j<m, let udenote the
matriz (u;;). Then there exists a piecewise linear continuous function H(u) on
R such that H(u) (s, t;) =u;;; further, if u;;® — u;; as k— o for 0<i<m,
0<j<n, H(u®) > H(u) uniformly on R.

PROPOSITION 2.5. If Ji.7,(E) is a Borel set in Co,[R], then E is a Borel set
in R™,

Proof. Define H on R™" as in Lemma 2. 4 so that H(«) (s,t) =0 if s=a or
t=a. Such an H is a continuous (and hence Borel) function from R™ to
Cz[R] Now XE(”)=(XJ(E, f)(E)OH) (u) since u€E lff H(M)EJ(;, D (E)
Suppose J, 7y (E) is a Borel set in C; [R]. Then Xpg=X;s nm °H is a
Borel function since it is the composition of two Borel functions. Hence E
is a Borel subset of Rm.

PROPOSITION 2. 6. Let h: N — N be an increasing function such that n<h(n)

for all nEN. Let
Cit={z€C,[R] : liﬂm S, ()=20—-a)(f—a)/2}.

Then m(C4) =1. re

Proof. Skoug [4, Proof of Lemma 1] showed that

ICz[R] {Sa},(,,) (.’l’) - (b—a) (5“a) /2} 2dx
=1/2{(b—a) (B—a) /h(n)}>2.

Let E,= {2 ¢ |8 (2) — (b—a) (8—a) /2] > I—:)/gz—%(b—a) (B—a)}.
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(b—a) (f—a) 12_ __(—a)(B—a) |2
1/2 { } o C2[R] { aﬁ 1) (x) 2 } dz

h(n)}

Eq

2—(19%%@—@2@—0[)2-%(.12,,).

n < 1 .
[h(n) logn]2 — n(logn)?2

Let F=LjEk and Fzﬁ F,. Then

Hence m, (E,) <

ml(F)<m1(F,,)< Zml(Ek)—lzZW 0 as an— oo,

n

So mi(F)=0. But for z&F, i.e. for z&¢E, for all 2># and for some =z,

(6—a) (ﬁ—a) log £
S,,hw (z)— ’< Voh (b—a)(B—a) for all k=xn.

Hence lim‘S (z) — (b @) (‘B —a) ’<l Iog ~—r=(b—a) (f—a)=0.
koo 1145
This implies that hm S, ()= 6 4)2(‘8 cx) for z& F. But m, (F)=0.

3. Scale-Invariant Measurable Sets in Yeh-Wiener Space

Let m; be the Borel measure given by m;(B) =m;(1"1B) for BE&(C,[R]).
Since 2‘1C1=C1, m;(Cz) =m1(Cl)=1 by Theorem 1. 1.

Let Y, denote the o-algebra obtained by completing (C,[R], B(C5[R], m))
and let %, be the class of m;—null sets. Note that every subset of C,[R]\C;
is in %;. Let % and % be the class of scale-invariant measurable sets and
scale-invariant null sets, respectively.

PrROPOSITION 3.1. (i) N is in W, iff AN is in % equivalently, 0,=,.
(ii) E is in Y, iff A7\E is in Y15 equivalently, U= Al
(iii) my(E)=m,(AE) for E in Y,

Proof. (1) Let N be in %;. Then N M where M is an m;-null Borel set.
Hence ey (AIM) =m ,M=0 and so A~1M is an m;—null Borel set. But then
ATINCAIM is in %;. The converse can be shown in essentially the same
way.

(ii) Let E be in %;. Then E=BUN where B is in #(C;[R]) and N is
in %;. Then A"IN is in #%; by (i) and so A lE=2"'BUAIN is in ;. The
rest of (ii) is easily checked.

(iii) Let E be in ;. Then E=BUM where B is in 8(C,[R]) and N is
my;null. Then

my(E) =m;(BUN) =m;(B) =my; (1"1B) =my (A" BU A"IN) =m; (A1"1E).
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PROPOSITION 3. 2. 'i/=lrl Yas %=1>L{: %y; Y is a c-algebra of subsets of C,[R].
>

REMARK. Beginning with this proposition, most of the proofs in the rest of
this section are much like the proofs of corresponding results in [2]. We
will include a few of these proofs but will omit most of them.

PROPOSITION 3.3. (i) E is in Y iff ENC, is in Y, for every 2>0.
(i) E is in % iff ENC; is in %, for every 2>0.

The next theorem is quite simple. But it gives a very useful characteriza-
tion of 4 and % in that it shows rather well what scale-invariant measurable
sets and scale-invariant null sets are really like and how they compare to
Yeh-Wiener measurable sets and Yeh-Wiener null sets respectively.

THEOREM 3.4. () E is in Y iff E has the form
3.1 E= (R%Ez) UL,

where each E; is an mi;—measurable subset of C, and L is an arbitrary subset
of CoUD. Further, for E written in this manner, m,(E)=m;(E;) for all
A>0.

(ii) N is in % iff N has the form

(3.2) N=(UN) UL,

where each N, is an m;~null subset of C; and L is an arbitrary subset of
CoUD.

REMARK. The preceeding theorem shows that there are many more Yeh-
Wiener measurable sets than scale-invariant measurable sets: A set E is
Yeh-Wiener measurable if and only if it has the form E;UL where E; is
an m,;~measurable subset of C; and L is an arbitrary subset of o(<LzJ¢9) Uubu

Co. Similarly a set is Yeh-Wiener null if and only if it has the form
NiUL where N; is an m;-null subset of C; and L is an arbitrary subset of
4,C2UDUC

Let a=50<51<...<sp=b, a=t,<2,<...<t,=S and let E be any subset of
R»», Let

(3.3) Q=Jg, n(E)={z€C,[R] : (z(s1, t1), ..., z (s, t,)) EE}.
We have seen, in §2, that E is Borel measurable in R#* if and only if Q
is Borel measurable in C,[R] and that E is Lebesgue measurable in R=* if
and only if @ is Yeh-Wiener measurable [3]. It is easy to see that such

sets Q are scale-invariant measurable, since for any >0,
;[Q: {.Z'ECz[R] : <x<51’ tl)a cvey x(sm, tn))ez_lE}
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is Yeh~Wiener measurable.
PROPOSITION 3.5. For every 2,>>0, &#(C3[R]) Y,

The following result of Skoug [4] becomes rather transparent using
Theorem 3. 4.

COROLLARY 3.6. Lét f be any function with domain (0, o) and satisfying
0< f(A) <1. Then there exists E in Y such that mi(AE)=f(R) for all 1>0.

Proof. For each >0, pick E;CC, such that E; is in %; and m;(E,;) =f(A71).
(Such E; exists by the following lemma. ) Then E*=‘/1 L{)E . is the desired set

since, by Proposition 3.1 and Theorem 3.4, we have m;(AE)= m;-(E)=
my-1 (Ek-l) =f(z)-

LEMMA. Given y<[0,1], there exists E;ZC, such that E, €Y, and m;(E;) =71
for each 2>Q.

Proof. Given r&[0,1], there exists a real number a, such that.
1 or u?
Vat—a) (p—a) = —a) B—a) H=T-
Let E= {z€C3[R] : —c0<z(b,8)<a,}. Then E is in @, and m;(E)=r.
Let E,=ENC;. Then E €% and m;(E;)=m;(E)=y. Let E;=AE;. Then
El is in Z/z and EICZC]_:CI and mz(Eb) =m1(2E1) =m1(E1) =7.

Qur sets C;, 4>0 and D depend on the particular sequence of partitions
on R that we choose. If 5., denotes another sequence of partitions, we
may let

Ci={zeC,[R] : li“rgS (x) 2b—a)(f—a)/2}

Di={z=C,o[R] : im S, (x) fails to exist}.
7o pa)

and

Essentially because of Proposition 2.6, all of the results obtained up to
this point, with changes in notation where appropriate, go through. Note,
however, that %;, %;, m; ¥ and % are all independent of the sequence of
partitions. A set E in % now has two decompositions according to the two

versions of Theorem 3. 4:

G. 4 E= (})JOE;) UL=( Y EM) ULk
where E;*=ENC;? and L:=EN (Cy2U D*). How do these two decompositions
relate to one another? The next proposition shows that they agree up to a
scale-invariant null set.

PROPOSITION 3.7. The two decompositions of E given by (3.4) have the
property that the set
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(3.5) (UE4E") U (LALY)

is scale-invariant null.

Proof. First note that for all >0
ma(E\E®) =m;[(ENCH\(ENCH)]
=m;[E;N (C\C:M) ]
<m; (Cz\cz")
<mz(C,LRINC ) =0.
Thus by Theorem 3.4, the set IL>JO(E AE) U (L\L?) is scale-invariant null.

In similar fashion one cans how that the set 190 (E.M\E;) U (IM\L) is scale-

invariant null which concludes the proof since
U (BER) U (LALR = (U (BAER) U (LR} U {U (BME) U (ZAL)].
This paper is based on Chapter 2 of the author’s Ph. D. Thesis [1]
written at the University of Nebraska under the direction of Professor Gerald

W. Johnson.

References

1. Kun S. Chang, Scale-invariant measurability in function spaces, Thesis, University
of Nebraska, Lincoln, Neb., 1979.

2. G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space,
Pacific J. of Math., 83 (1979), 157-176.

3. D.L. Skoug, Converse measurability theorems for Yeh-Wiener space, Proc. Amer.
Math. Soc., 57 (1976), 304-310.

4. . The change of scale and translation pathology in Yeh-Wiener space, Riv.
Mat. Univ. Parma, 3(1977), 79-87.

5. J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer.

Math. Soc., 95(1960), 433-450.

Yonsei University





