INTEGRATION FORMULAS INVOLVING FOURIER-FEYNMAN TRANSFORMS VIA A FUBINI THEOREM

  • Huffman, Timothy (Department of Mathematics, Northwestern College) ;
  • Skoug, David (Department of Mathematics and Statistics, University of Nebraska) ;
  • Storvick, David (Department of Mathematics, University of Minnesota)
  • Published : 2001.03.01

Abstract

In this paper we use a general Fubini theorem established in [13] to obtain several Feynman integration formulas involving analytic Fourier-Feynman transforms. Included in these formulas is a general Parseval's relation.

Keywords

References

  1. Theisi A functional transform for Feynman integrals similar to the Fourier transform M.D,Brue
  2. Dude Math.J. v.12 some examples of Fourier-Wiener Transforms of analytic functionals R,H,Cameron
  3. Duke Math.J. v.12 Fourier-Wiener transforms of analytic functionals R,H,Cameron;W,T,Martin
  4. Duke Math.J. v.14 Fourer-Wiener trasforms of functionals belonging to L₂over the space C R,H,Cameron;W,T,Martin
  5. Michigan Math.J. v.23 An L₂analytic Fourier-Feynman transform R.H.Cameron;D.A.Storvick
  6. Analytic Functions (Kozubnik,1979) Lecture Notes in Math. v.798 Some Banach algebras of analytic Feynman integrable functionals R,H.Cameron;W.R.Martin
  7. Psnomei.Math.J. v.10 The effect of drift on the Fourier-Feynman transform, the convolution product and the forst variation S.J.Chang;D,L,Skoug
  8. J.Korean Math.Soc v.19 Scale-invariant measurability in Yeh-Wiener space K.S.Chang
  9. J.Korean Math,Soc. v.24 Functions in the Banach algebraS(v) K.S,Chang;G,W,Hohnson;D,L,Skoug
  10. Trans.Amer.Math.Soc. v.347 Analytic Fourier-Feynman transforms and convolution T.Huffman;C.Park;D,Skoug
  11. Rocky Mountain J. Math, v.27 Convolutions and Fourier-Feynman transforms T.,Huffiman;C,Park;D,Skoug
  12. Michigan Math,J, v.43 Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals T.,Huffiman;C,Park;D,Skoug
  13. J,Korean Math,Xon. v.38 A fubini theorem for analytic Feynman integrals with applications T,Huffman;D,Skoug;D,Storvick
  14. Michigan Math.J, v.26 An Lp analytic Fourier-Feynman transform G,W,Johnson;D,L.Skoug
  15. Pacific J.Math v.83 Scale-invariant measurability in Wiener space G,W,Johnson;D,L.Skoug
  16. Int.J.Math.Math,Sci v.22 Relationships among transforms.convolutions and first variations J,Kim;J,Ko;C,Park;D,Skoug
  17. J.Funct,Anal v.47 Integral transforms of analytic functions on abstract Wiener spaces Y,J,Lee
  18. Rocky Mountain J, Math, v.28 Relationshops among the forst variation, the convolution product, and the Fourier-Feynman transform C,Park;D.Skoug;D.Storvick
  19. Adv.Math. v.4 Transformations in Wiener space and squares of quantum fields I,Segal
  20. Pacific J,Math v.15 Convolution in Fourier-Wiener transform J,Yeh
  21. Rocky Mountain J, Math v.25 Convolution on Fourier-Wiener transform on abstract Wiener space I,Yoo