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INTEGRATION FORMULAS
INVOLVING FOURIER-FEYNMAN
TRANSFORMS VIA A FUBINI THEOREM

TiMoTHY HUFFMAN, DAVID SKOUG, AND DAVID STORVICK

ABSTRACT. In this paper we use a general Fubini theorem estab-
lished in [13] to obtain several Feynman integration formulas in-
volving analytic Fourier-Feynman transforms. Included in these
formulas is a general Parseval’s relation.

1. Introduction and preliminaries

Let Cy[0,T] denote one-parameter Wiener space, that is the space
of R-valued continuous functions () on [0,T] with x(0) = 0. Let M
denote the class of all Wiener measurable subsets of Cp[0,T] and let m
denote Wiener measure. (Cy[0,7"], M, m) is a complete measure space
and we denote the Wiener integral of a Wiener integrable functional F'

by
/ F(x)m(dx).
Co[0.T]

A subset E of Cy[0, T is said to be scale-invariant measurable (s.i.m.)
[8,15] provided pE € M for all p > 0, and a s.i.m. set N is said to be
scale-invariant null provided m{pN) = 0 for each p > 0. A property
that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.e.). If two functionals F' and G are
equal s-a.e., we write F' =~ G. For a rather detailed discussion of s.i.m.
and its relation with other topics see [15]. It was also pointed out in
[15, p. 170] that the concept of s.i.m., rather than Borel measurability
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or Wiener measurability, is precisely correct for the analytic Fourier-
Feynman transform theory and the analytic Feynman integration theory.
Segal [19] gives an interesting discussion of the relationship between scale
change in Cp]0,7T] and certain questions in quantum fleld theory.

Throughout this paper we will assume that each functional F (or G)
we consider satisfies the conditions:

(1.1) F :(Cy[0,T) — C is defined s — a.e. and is s.i.m..

(1.2) / |F(pz)|m(dz) < oo for each p > 0.
Col0,T}]

Let C; and C7; denote the complex numbers with positive real part
and the nonzero complex numbers with nonnegative real part respec-
tively. Let F' satisfy conditions {1.1) and (1.2) above, and for A > 0,
let

_ y—1/2 ).
IO fc g PO Pm(a)

If there exists a function J*(X) analytic in C, such that J*(X) = J(\)
for all A > 0, then J*(A) is defined to be the analytic Wiener integral of
F over (5[0, 7] with parameter A, and for A in C we write

(1.3) / " Faymidz) = T4 ).

Co{0,T]

Let g # 0 be a real parameter and let F' be a functional whose analytic
Wiener integral exists for all A € C. If the following limit exists, we
call it the analytic Feynman integral of F with parameter ¢ and we write

anfq areio
(1.4 f F(z)m(dz) = lim F(z)m(dx)
Col0,T) A= =iq Sy [0,7]

where A — —ig through values in C . Finally, for notational purposes,
we let

{1.5) anm
/an,\ f F m)m(d:c) A = C+
F(z)m(dz) = un ' )
Colo,T] CO[;;@,T] F(z)m{dz), A=—ige Cy —C,.

The following Fubini theorem established in [13], plays a major role
in this paper.
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THEOREM 1. Assume that F satisfies conditions (1.1) and (1.2) above
and is such that its analytic Feynman integral foa:[{;‘T] F(x)m(dx) exists

for all ¢ € R — {0}. Then for all a,b € R and all (\,8) € C. x C™.

with A + 8 # 0,
'/.am Flay + bz)m(dy)) m(dz)

/anﬁ
Col0,T Co[0,T]

BT ABY(Ab2+3a2)
(1.6) = f F{z)dz
Col0,T

QT ang
=/ f Flay + bz)m(dz) | m(dy).
Col0,T Col0,7]

In section 2 below we use Theorem 1 to help us establish several
Feynman integration formulas involving Fourier-Feynman transforms.
Finally, in section 3 we establish additional integration formulas includ-
ing a general Parseval’s relation.

2. Fourier-Feynman transforms

The concept of an L) analytic Fourier-Feynman transform (FFT) was
introduced by Brue in [1]. In [5], Cameron and Storvick introduced an
Ly analytic FFT. In [14], Jobnson and Skoug developed an L, analytic
FFT for 1 < p < 2 which extended the results in [1,5] and gave various
relationships between the Ly and the L theories. In [10], Huffman,
Park and Skoug defined a convolution product for functionals on Wiener
space and in [11,12] obtained various results involving the FFT and the
convolution product. Also see [7,16 and 18] for further work on these
topics.

In this paper, for simplicity, we restrict our discussion to the case p =
1; however most of our results hold for all p € {1,2]. Also, throughout
this section, we will assume that the functionals F' : Cy[0,7] — C satisfy
the hypotheses of our Fubini theorem, namely Theorem 1 above.

For A € C; and y € Cp[0,T7, let

anwy

1) OENW = [ Fly+apm(ds),

Cou[0,T7]

Then for ¢ € R — {0} (see [10,p.663]), the L; analytic FFT, 7" (F) of
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F, is defined by the formula (A € Cy)
(2:2) (T E) ) = Jim, (15(F))(w)

for s-a.e. y € Cp[0,T] whenever this limit exists. That is to say,

anfq
23 TOENW = [ Fly+am(d)

C[)[O,T]
for s-a.e. y € Cp[0,T]. We note that if Tq(l)(F) exists and if F = G,
then Tél)(G) exists and T, (F) (G)

In equations (2.4), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12) and (2.13)
below, we establish various analytic Feynman integration formulas in-
volving Fourier-Feynman transforms.

THEOREM 2. Let F be as in Theorem 1 above and let 7 > 0 be given.
Then for all g, and g2 in R — {0} with q; + g2 # 0,

an frqy
/ (T (F))(Vre)m(dz)

C(){O,T]

anfiq 93) /(a1 +a2)

(2.4) - / Flz)m(dz)

Co[0,T]

an frg,
= [ @@ Enrmin).

Proof Using equation (2.3) and the first equality in equation (1.6}
witha =1, b= /7, A = —iq; and 8 = —irge, we obtain that

an frqg
f (T (F)) (rz)m(dz)

Col0,T]

-/ i ( " B yymidy)m(dz)

D[U!T] CU 0 T
(2-5) anf(,-qqu),’(rq1+7"q2)
_ / F(z)m(dz)
Co[O,T]

anf(qyaz)/ (a1 +a2)
— ] F(zym{dz).
Co [0,T}
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Also using equation (2.3) and the second equality in equation (1.6)
with @ = \/r, b=1, f = —igs and A = —irg;, we obtain that

anfrql
f (T () (v/)m(dy)

Co [O,T]

-/ i [ " Py + Dmld)m(dy)

U[O!T] O T]
(26) an fi. qrag)/{rez+rqy)
— [ F(z)m{dz)
Col0,T]
anfiqraz) /(a1 taz)
- f F(z)m(dz).
Co[0,T]
Now equation (2.4) follows from equations (2.5) and (2.6). O

Our first corollary below says that the Feynman integral with param-
eter ¢o of the FFT with parameter g; equals the Feynman integral with
parameter g; of the FI'T with parameter ¢ provided g; + g2 # 0.

COROLLARY 1 TO THEOREM 2. Let F be as in Theorem 2. Then for
all g1 and gz in R = {0} withq; + g2 #0,

anfq, anfq,
(2.7) ]C (T3 (F))(z)m(dz) = fc (T3 (F) (y)mldy).

(0,7 0[0,T7]

COROLLARY 2 TO THEOREM 2. Let F' be as in Theorem 2. Then for
all g in R — {0},

anfy anfqza
[ @@E)@mdn = [ Fem)

Co[O,T]

;/anfq F(vV2z)ym(dz).

CU[U,T]

Proof. 'The first equality in equation (2.8} follows by letting » = 1
and ¢ = ¢o = ¢ in equation (2.4). The second equality follows from the

formula anfe anf,
/ F(z)m(dz) = / F(z/vVE)m(dz)

Cal0,7] Co[0,T]
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established in [13] for £ > 0. O

COROLLARY 3 TO THEOREM 2. Let F be as in Theorem 2. Then for
all g in R — {0},

anf_q an fq
i RPN mi) = | Fam)

[OIT] CO[OrT]
(2.9) iz
= [ ) wimidy)
Cylo, 1
Proof. Simply choose ¢1 = ¢/2, g2 = —g and r = 1 in equation
(2.4). O

THEOREM 3. Let F be as in Theorem 2 and let ¢1,¢o2,...,q, be
elements of R — {0} with

ZQIQQ Qk%o for k=2,.

Then, for s-a.e. z € Cy|0, T]
(TEHTD (ATPEPEN) - ()

anfaor
(2.10) :/‘ F(z + z)ym(da)
q[0,T]
= (TN (F))(2)
where
o = D82 Gn 1
n = T gi1Gz.gn 1 1 1
= M atu ooty

Proof. Using equation (2.3), and then equation (1.6) repeatedly, we
obtain that

(TEHT CATPETPE))) ()

anfqn anfq 1 anfq, anfql
= f f Flz4+y1 +y2+ - -+ yn)m(dyr))
Co [O:T Cpl0, T Co[0,T] /Co[0,T)

m(dyz)) ) (dyn 1)) dyn)

= /cmfu.,, F(z + z)m(dz)

Col0.T]
—TD(F))2)

Qn
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for s-a.e. z € Cyl0,T. O

Choosing q; = ¢ for j = 1,2,...,n, we obtain the following corollary
to Theorem 3.

COROLLARY 1 TO THEOREM 3. Let F be as in Theorem 3 and let g
be an element of R — {0}. Then for s-a.e. z € Cy[0,T),

anfy
1) (EPEPENE = CHENE = [ Ple+ Vanm(da),

Tare Cp[0,7]
(2.12) ,
TP EPENE = THEN = [ F+ VEmpmids),

and in general,
(TSI (. (T (F)) . N2) = (T (F)(2)

(2.13) -/ " P(e 4 rmymlds).

Cu[0,T}

COROLLARY 2 TO THEOREM 3. Let F' be as in Theorem 3 and let
g1 and gu be elements of R — {0} with ¢; + ¢» # 0. Then for s-a.e.
z e Co[D,T],

(214)  (TD(T(F))(=) = T% (F))(z2) = (T(TD(F)))(2).

REMARK 1. We note that the hypotheses (and hence the conclusions)
of Theorems 1-3 and their corollaries above are indeed satisfied by many
large classes of functionals. These classes of functionals include:

(a) The Banach algebra S defined by Cameron and Storvick in [6]; also
see [9,12,18].

(b) Various spaces of functionals of the form

T
F(z) = exp{ f Ft z(8)de}
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for appropriate f : [0,T] x R — C; see for example [5,11 and 14].

(c) Various spaces of functionals of the form

T T
Flz) = f( /0 o (t)dz(t), . ., /0 on(t)dz(t)

for appropriate f as discussed in [10,16).

(d) Various spaces of functionals of the form

F(z) = exp{ /O f F(s,t,2(s), o(6))dsdt)

for appropriate f : [0,7]? x R? — C; see for example [12].

REMARK 2. In a unifying paper {17], Lee obtains some similar results
for several different integral transforms including the Fourier-Feynman
transform. However, the results in this paper hold for much more general
functionals F. For example, in our notation, Lee requires the functional
F(z + Ay) to be an entire function of A over C for each z and ¥ in
Cy[0,T] whereas we don’t even require F' to be a continuous function.
The classes of functionals studied by Yeh in [20] and Yoo in [21] for the
Fourier-Wiener transform are similar to those used by Lee in [17].

3. Further applications

First we state the definition of the convolution product of two func-
tionals F and G on Cy[0,T] as given by Huffman, Park and Skoug in
[10, p. 663]. This definition is different than the definition given by Yeh
in [20] and used by Yoo in [21]. In [20] and [21], Yeh and Yoo study
the relationship between their convolution product and Fourier-Wiener
transforms. For A € C7, the convolution product (if it exists) of F and
G is defined by the formula (see equation (1.5) above)

arny

31) (PG = /C o e OV

for s-a.e. y € Cy[0, 7). When A = —ig, we usually denote (¥ * G)x by
(F * G)q-

ym(ds)
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In our first theorem of this section, we show that the Fourier-Feynman
transform of the convolution product is a product of their transforms.

THEOREM 4. Let F be as in Theorem 1 and assume that G :
Cy[0,T] — C satisfies the same conditions as F; i.e., G is s.i.m. fc 0.7
|G(pzx)| m{dz) < oo for all p > 0 and the analytic Feynman integral of

G exists for all g € R — {0}. Furthermore assume that T(l)((F * Glq)
exists for all ¢ € R — {0}. Then for all g € R - {0},

(32)  (TO(F«GO)))2) = (T ENEVHTPGON(/V)

for s-a.e. z in Co[0,T).

Proof. Because of the assumptions on F and G, all three of the
transforms in equation (3.2) exist; thus we only need to establish the
equality. For A > 0, using (2.1) and (3.1), we see that

(T (F * G)))(2) = [O 2Ol 1A P

4

= wz_ —1/2 y+zx _1/2
/(?uiO,T}/;:n[o,g (AP EENE A \f Ly ym(dz)m(dy)

for s-a.e. z € Cp[0,T]. But wy = (y +z)/V2 and wy = (y — z)/V2 are
independent standard Wiener processes, and hence

(T ((F * G))(2) = /C oL FGV2 VRGNV sV
m{dwsa))m{dw )

- / F2/V3 + wy /v Nm(dw:)
Co[0,7
/ G(z/V2 +ws /¥ Nym{ds)
CU[U,T]
(T (F)/ VI TNG) /)

for s-a.e. z € Cpl0,T]. Now by analytic extensions through C; we
obtain that

(3.3)  (TM((F * G)))2) = (EN/VATAG)(2/V2)
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holds throughout C, . Finally, equation (3.2) follows from equation (3.3)
by letting A — —ig, since all three of the transforms in (3.2) exist. O

COROLLARY 1 TO THEOREM 4. Let F be as in Theorem 4. Then for
all g € R — {0},
(T ((F % 1)))2) = (T (F)(=/v2).

Furthermore, if Tq(l)((F x F),) exists, then

(TS ((F % F)))(z) = (T F) =/ VD))

In our next theorem, we establish a general Parseval’s relation; for
related results in the Fourier-Wiener theory see Cameron [2], Cameron
and Martin [3,4], and 11 Yoo [21].

THEOREM 5. Let F' and G be as in Theorem 4. Furthermore, assume
that F' and G are continuous on Cy[0,T|. Then for all g € R — {0},

L DD @)V Dmia

_ f " P /VBG( e/ Eymids),

Co[U,T]

(3.4)

Proof. Because of our assumptions on F and G, the analytic Feynman
integrals on both sides of equation (3.4) certainly exist. Also recall that
in the definition of the analytic Feynman integral (1.4), we assumed
that A could approach —iq in an arbitrary fashion through values in
C . Thus, using (3.2), Theorem 1, (3.1), and the continuity of F and



Integration formulas involving Fourier-Feynman transforms 431

(7, we obtain that

anf_q4
] (T (F)) (z/VATO (@) (/V2)m(dz)

Co[0,7T]

anf_g
- ] (TO(F * G)g))(2)m(d2)
CD[O,T]

GRWgptqi
= lim (Tp—qi ((F * G)p—qi(z)m(dz)
P—0% Jyl0,7]

T ( / T P @)y (et y)m(dy)) m(dz)

p—0% Joyl0.1) Co[0.7]

AN (p2.142) f2p
= lim {(F % G)pgi (wym(dw)
p;,0+ CD [DaT]
= lim (F*G)pegil 2 wim(dw)
p—0% Joyo,1 P 2 + g2

. anwy_gi ) x
= lim ] F(,|——w+ —)
p—0t CU[O,T]( Col0,T] rP+¢ V2

r z
G(, ;‘Ww — E)m(daf;)) m(dw)

_ [ ( / e F(m/\/i)c(—x/x/i)m(dm)) m(dw)
Cpl[0,T] C

D[U!T]
an fq
- f Flz/V2)G(—/v2)m(dz)
Co[0,T]
as desired. O

Our first corollary gives an alternative form of Parseval’s relation.

COROLLARY 1 TO THEOREM 5. Let F' and G be as in Theorem &.
Then for all ¢ in R — {0},

anf_g
| EREn@Ee)Emd:)
(3.5) cotor) -
- f F()G(—z)m(da).

Ce[0,T}



432 Titmothy Huffman, David Skoug, and David Storvick

COROLLARY 2 TO THEOREM 5. Let F be as in Theorem 5 and
assume that qul)((F « I')q) exists for all g € R — {0}. Then

(36)
anf_q anfq
| O VB = [ Fa/VBF-eVim(d)

Co[0,77] Ca[0,77]

THEOREM 6. Let F be as in Theorem 1. Furthermore, assume that
F is continuous on Cy[0,T]. Then for all ¢ in R — {0},

(3.7) (TEHTIDEN) () = Fly)

for s-a.e. y € Cy[0,T).

Proof. Proceeding as in the proof of Theorem 5 and using equations
(2.2), (2.1}, (1.6) and the continuity of F, we obtain that for s-a.e.
ye CU[O:'T]:

(T8 @D FNNy) = m (Tyegil T s (F)) (1)

Gy pgi ANy g4
= lim (/ Fly+z+ a:)m(d:t:)) m(dz)

p=0t Joo[0,7) Colo,7)

. ARW(p24e2)/(2p)
= lim Fy + wym(dw)
p—0F Jog[0,7]

. 2p
= lim Fly+ | ——w)m(dw
R (y \/p2+q2 ym(dw)

:f F(y)m(dw)
Cyl0, T
= F(y). n

COROLLARY 1 TO THEOREM 6. Let E be the class of all continuous
functionals F' : Cy[0,T} — C satisfying the hypotheses of Theorem 1.

Let To(l) denote the identity map; i.e., Tél)(F) =~ F. Then

U} e
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forms an abelian group acting on E with (T\")~1 = TEIQ).

REMARK 3. Locking at equation (3.2) above, together with its proof,
it is quite tempting to conjecture that for s-a.e. z in Cy[0, T,

(38)  (TUV((F * G)gu))(2) = (T o (F))(2/ V2T gy (O))(2/V2)

tn+¢72 g1+49

provided that ¢; + ¢go # 0. But in general, equation (3.8) holds if and
only if g1 = g2 = ¢, in which case equation (3.8) reduces to equation
(3.2). The proof given above to establish equation (3.2) fails to work for
equation (3.8) since for A > 0 and 8 > 0,

(To((F * G)g))(2)

Ly e,
/CO[OT] /CO[OT] NS RNGT Ll
m(dz))m(dy),

+

727

-
Sl

while w; = # + L\/ﬂ? and wy = —\/% - Lm are independent processes
if and only if A = 3.

In particular (see section 3 of [12] for the appropriate definitions),
for F' and G in the Banach algebra S with corresponding finite Borel
measures [ and g in M(L,[0,7T]) and using equations (3.2) and (3.5) of
[12], it is easy to see that
(3. 9)

( Qqq (F) (Z/\/_)

z(ﬂh + ¢2) o2 v
]L o™ / L8 [* e wanar),

(3.10)
(T4 ey (G))(2/V2)

g1+4ao

=[E o exp{\/_/ t)dz(t) — 41q+q§2)f0 w? (t)dt}dg(w),
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and that
(3.11)

ORI / w(t)ld=(t)}

Q1+Q2
: )]dt
exp{— s f[v (¢) +w?(t)]dt}

? Q1 - 92)
exp(1D %) [0 oft)w(t)dt}df (v)dg(w)

Now a careful examination of equations (3.9), (3.10) and (3.11) shows
that equation (3.8) holds if and only if ¢; = g5.
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