• Title/Summary/Keyword: sand beach

Search Result 211, Processing Time 0.024 seconds

A Sediment Transport of Cape Cod Coast, Massachusetts, USA (미국 매사추세츠주 Cape Cod 해안의 퇴적물 이동)

  • 김동주;은고요나
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.589-594
    • /
    • 1997
  • A total of 24 surface sediment samples collected from coastal region and fronting of sea cliff on Cape Cod In southeastern Massachusetts, were analyzed to Investigate the sediment transport mechanism. According to the result of grainsize analysis, the overall trend of g.k size decreases from the north(Wood End Beach) to the south(Nauset Light Beachy. The coarser materials tend to be deposited at the foreshore than at the backshore. Especially gavel content(%) Is very high in northern beaches. The lavel fraction tended to concentrate at the toe of the beach. In addition to gravel. the beach and nearshore bar also tended to be deposite of very coarse sand and the Inner fraction accumulate in the offshore bar, Grainsize analyses of sediment Indicates that the coarsest sands Including gravel accumulate In the beach and nearshore bar, the finer fraction winnowed out by wave action to be deposited In the offshore bar. The beach and nearshore bar sands and gavel are subsequently transported laterally by the wave-driven longshore drift, and finally they come to rest in the distal end of Provincetown Hook. The faller offshore sands are trnasported laterally to the south by net southward-directed longshore current.

  • PDF

Benefits of Camera Monitoring System in Studying on Coastal Dune Erosion by Typhoon (태풍으로 인한 해안사구 침식 연구에 대한 카메라 관측 시스템의 유용성)

  • Kim, Taerim;Kim, Dongsoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.41-52
    • /
    • 2014
  • Coastal dune, as one part of beach system, contributes for beach recovery as well as preventing beach erosion by exchanging sands between beach and dune. Due to high tidal range, the boundary of sand dunes on the west coast of Korean Peninsula is outside the high water line during spring tide and erosion also occurs in high waves during spring high tide. This paper investigates the erosion status of the dunes located in the JangHang beach by analyzing images from camera monitoring system, and tide and wave data observed adjacent to the study site during the passage of 4 typhoons in 2012. It also studies the benefits of camera monitoring images in investigating the dune erosion and analyzing coastal topographic changes.

Macrotidal Beach Classifications Considering Beach Profiles and Changes: The Case of Beaches in Taean Region (2017-2018) (지형형태와 변화를 반영한 대조차 해빈 분류: 태안지역 해빈을 사례로(2017-2018))

  • Kim, Chan Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.47-65
    • /
    • 2019
  • A case study was conducted in Taean region to seek a more detailed macrotidal beach classification than existing beach classification models (Masselink and Short, 1993). Seepage and ridge & runnel were used for classification. On 20 beaches, 68 transects were surveyed 5 times using VRS-GPS. Cross-section area from the transect profiles, mean grain size from sediment analysis, significant wave height from Swan-wave modeling and beach embaymentization from aerial photograph analysis were used to identify the characteristics of the individual types. The transects were classified into 5 types in Taean region; Type 1: low tidal terrace, Type 2: low tidal terrace & ridge, Type 3: dissipative, Type 4: seasonal ridge, and Type 5: ridge & runnel. Generally, seepage was related to coarse sediment size and ridge & runnel was related to high significant wave height. Each type has different characteristics and there was a tendency between the types. The low tidal terrace type had coarse sediments, because this type is excluded from the littoral cell. In this study, the ridge and runnel type could be applied to the classification because the study area is limited only to the macrotidal environment in Taean region.

Seasonal Morphodynamic Changes of Multiple Sand Bars in Sinduri Macrotidal Beach, Taean, Chungnam (충남 태안군 신두리 대조차 해빈에 나타나는 다중사주의 계절별 지형변화 특성)

  • Tae Soo Chang;Young Yun Lee;Hyun Ho Yoon;Kideok Do
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.203-213
    • /
    • 2024
  • This study aimed to investigate the seasonal patterns of multiple bar formation in summer and flattening in winter on the macrotidal Sinduri beach in Taean, and to understand the processes their formation and subsequent flattening. Beach profiling has been conducted regularly over the last four years using a VRS-GPS system. Surface sediment samples were collected seasonally along the transectline, and grain size analyses were performed. Tidal current data were acquired using a TIDOS current observation system during both winter and summer. The Sinduri macrotidal beach consists of two geomorphic units: an upper high-gradient beach face and a lower gentler sloped intertidal zone. High berms and beach cusps did not develop on this beach face. The approximately 400-m-wide intertidal zone comprises distinct 2-5 lines of multiple bars. Mean grain sizes of sand bars range from 2.0 to 2.75 phi, corresponding to fine sands. Mean sizes show shoreward coarsening trend. Regular beach-profiling survey revealed that the summer profile has a multi-barred morphology with a maximum of five bar lines, whereas, the winter profile has a non-barred, flat morphology. The non-barred winter profiles likely result from flattening by scour-and-fill processes during winter. The growth of multiple bars in summer is interpreted to be formed by a break-point mechanism associated with moderate waves and the translation of tide levels, rather than the standing wave hypothesis, which is stationary at high tide. The break-point hypothesis for multi-bars is supported by the presence of the largest bar at mean sea-level, shorter bar spacing toward the shore, irregular bar spacing, strong asymmetry of bars, and the 10-30 m shoreward migration of multi-bars.

Thematic and geometric analysis of Bangpo beach based on UAV Remote Sensing (무인항공기반 태안반도 방포해빈의 지형분석)

  • Bae, Sungji;Yu, Jaehyung;Jeong, Yong-Sik;Yang, Dongyoon;Han, Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • High resolution aerial photographs and digital elevation models for Bangpo beach using UAV were generated in this study to analyze the thematic and geometric characteristics of coastal features. Based on 728 aerial images acquired on September 10, 2016 by the UAV, a image mosaic at 2.2 cm spatial resolution and a digital elevation model at 4.4 cm spatial resolution were developed. This study found out that Bangpo beach consisted of intertidal zone and supratidal zone. The intertidal zone can be subdivided into lower part and upper part with distinctive geomorphological characteristics. While the lower part included sand bars and ripple marks along the coastline, the cusps and sand dunes were the major coastal features of the upper part. Part of the intertidal zone was occupied by shore platform with average slope of 0.9 degree containing various sizes of gravels. The supratidal zone slanted toward ocean with berms on the surface with an interval of 15 m. These coastal features indicated the flow intensity towards to the land and tidal effect. It validated that the UAV application in coastal research was very effective analyzing to examine coastal processes.

Monitoring of Vegetation Coverage for Selecting Plants for Beach Revegetation (해안녹화식물 선발을 위한 식생 피복도 모니터링)

  • Kim, Dongyeob;Im, Sangjun;Kweon, Hyuck-Min;Yim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.519-524
    • /
    • 2010
  • This study was carried out to select suitable plants for beach revegetation as a preliminary study for quantifying the effect of decreasing sand movement. After planting some herbal plants in field, monitoring of temporal change of vegetation coverage which was index of the growth rate was conducted. Through literature reviews, 24 candidate plants for beach revegetation were selected, then seven species of them, Peucedanum japonicum Thunb., Dianthus japonicus Thunb. ex Murray, Sedum oryzifolium Makino, Sedum takesimense Nakai, Sedum spectabile Boreau, Farfugium japonicum (L.) Kitam., Aster sphathulifolius Maxim. were picked through salinity tolerance experiments in laboratory. Seven species selected by salinity tolerance experiments and two additional herbal plants, Prunella vulgaris var. lilacina Nakai and Linaria vulgaris Mill., not the candidates, were nine final species which were planted in the beach around Osan port, Uljin, Korea. The changes of vegetation coverage of each species were investigated from photos periodically taken for about a year using image processing methods. As a result of the monitoring, Sedum takesimensei, Dianthus japonicus and Aster sphathulifolius were observed with high coverages during the whole monitoring while Prunella vulgaris var. lilacina and Linaria vulgaris were observed with low coverage during the same period. Consequently, Sedum takesimensei, Dianthus japonicus and Aster sphathulifolius were concluded as the most suitable plants for beach revegetation. Furthur study to quantify the effects of decreasing sand movement by the selected species is needed.

Analysis of Sedimentation and Erosion Environment Change around the Halmi-island, Anmyeondo in West Coast of Korea (안면도 할미섬 주변의 침식·퇴적환경 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • In this study, we analyzed sedimentation and erosion environment around Halmiseom on Anmyeon Island using wind direction and wind speed data, gain size analysis data and datum-point measured values. To observe changes in sedimentation and erosion environment around Halmiseon, we installed datum points at 12 locations around Halmiseom and carried out at total of 32 field measurements from May 16th, 2010 to May 8th, 2012. The field measurement results showed that H-3, H-4, H-5 and H-9 points are dominated by sedimentation environment, and H-7, H-8, H-10, H-11 and H-12 points are dominated by erosion environment. Meanwhile, sedimentation and erosion appeared alternately at H-2 and H-6 points. These results indicate that a bank installed in the southwest side of Halmiseom prevented sand of the beach from moving to the northeast side, leaving the sand of the beach being deposited at the sites, and the northeast side, where sand was not provided from beach ridge of Halmiseon was dominated by sedimentation. That is, the southwest side of Halmiseom was dominated by sedimentation, but the northeast side was dominated by erosion in general. However, the opposite trends were observed at H-9 point of the northeast side and H-12 point of the southwest side. According to analysis, since H-9 point is located at the end of sand spit connected to Halmiseom, the supply of sediments by a tidal current is possible. On the other hand, it was difficult to analyze the cause of erosion in case of H-12 point located at the sand dune due to the short measurement period.

A Study on Wind-drift Sand Deposition by Vegetation and Coastal Debris using a Wind Tunnel Test (식생 및 해안표착물에 의한 비사 퇴적 풍동실험 연구)

  • Je, Young Jun;Jeon, Yong Ho;Yoon, Han Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.163-170
    • /
    • 2013
  • The correlation and interaction mechanisms between marine debris and the vegetation zone were studied on the Jinu-do natural beach of the Nakdong river estuary. Laboratory wind tunnel experiments were carried out under the wind-field and bottom-sand conditions using wind tunnel test equipment to investigate the sedimentation characteristics of wind-drift sand deposition around marine debris and the vegetation zone. The major environmental factors/loads considered in this study were the motion of sand by wind on the beach, deposition of marine debris, and change in the vegetation zone/line. When the marine debris was installed in the wind tunnel, deposition at the front of the structure appeared first by wind action, and then deposition developed from behind at 70% of the front ground level. In contrast, in the case of vegetation, the deposition phenomenon appeared first from behind the vegetation zone/line, and was 60% higher than the front. When the height of the debris and vegetation was the same, the required experimental time to bury the vegetation completely was about twice that of the marine debris.

A Fundamental Investigation on the Marine Environmental Conditions of Bathing Beach in Jeju (제주도 사빈 해수욕장의 해양환경 조건에 관한 기초조사)

  • Kim Nam-Hyeong;Jang Seong-Hun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.53-64
    • /
    • 2001
  • Bathing beach may be one of the ocean resorts in popular, which peoples can easily access in summer. Three beaches in Jeiu island are surveyed about natural environmental conditions using coastal engineering technique and questionnaire are carried out. Also the satisfaction index on the sand size, wave height, water temperature, transparency and bottom slope is gained very well. The results obtained from this study can be utilized making a new artificial bathing beach in the future.

  • PDF

Investigation of Coastal Erosion Status in Geojin Port Area (거진항 일대의 해안 침식 현황 조사 연구)

  • Kim, In-Ho;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • Coastal erosion and its impact on human activities as well as the economic damage and environmental conservation of coastal area is one of major concern in the national policies. In this study, we conducted physical investigations to evaluate effects of erosion in the Geojin beach, which is located nearby the Geojin Port, for a detecting of shoreline change and beach cross-sectional area. The results showed that significant coastal erosion of the Geojin beach has occurred by the complex resources of natural factor, such as rising sea level, storm surges, high wave, and man-made construction. Especially, due to the sand supplement from Jasan river, the section which is nearby the estuary of Jasan river is maintained as a stable beach, whereas beach erosion of the other site in GW04 section has been increased indeed. Therefore, we suggest that it is need to continuous monitoring using DGPS and various surveying techniques to prevent beach erosion onto the GW04 section.