• Title/Summary/Keyword: rural small stream

Search Result 75, Processing Time 0.026 seconds

Research on the Utilization of the Native Plants in Restoration of Stream-Side in Rural Areas (농촌마을 소하천변 식생복원을 위한 자생식물 선정에 관한 연구)

  • Kang, Bang-Hun;Lee, Sang-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.4 s.33
    • /
    • pp.83-88
    • /
    • 2006
  • Recently, management and restoration efforts using the plants promote the disturbed habitats such as a set-asides or field boundaries. But, side effects are coming out because of using the exotic plants in restoration process. This study was conducted to select the native plant species used for restoration through the vegetation survey and plant community analysis at small stream-side in rural villages. We surveyed at two small stream-sides in open field and high land area in 2005 as a case study. Total 126 species was found at small stream side in open field area. As the result of important value' calculation, Persicaria thunbergii 23.0%, Humulus japonicus 18.6%, Phragmites communis 4.4%, Bromus japonicus 4.2%, and Rosa multiflora 3.4% were in the order of important value. Total 92 species were found at small stream side in high land area. As the result of important value' calculation, Dactylis glomerata 16.1%, Artemisia princeps var. orientalis 11.0%, Persicaria thunbergii 10.9%, Humulus japonicus 9.3%, Phragmites japonica 5.2% and Phragmites communis 3.5% were in the order of important value. We selected some plant species to use in restoration after due consideration of problems of exotic plant and high coverage and density species, and ecological process; Persicaria thunberii, Phragmites communis, Bromus japonicus, Rosa multiflora, Equisetum arvense, Digtaria sanguinalis, Impatiens textori, and Artemisia princeps var. orientalis in open field stream-side, and Artemisia princeps var. orientalis, Persicaria thunbergii, Phragmites japonica, Phragmites communis, Artemisia selengensis, Panicum bisulcatum, Rorippa indica, and Equisetum arvense at hghland stream-side. We will verify the selected native plants and plan the utilization of the native plants in restoration at stream-side in rural village.

Temporal and Spatial Analysis of Hydrology and Water Quality in Small Rural Streams for Stream Depletion Investigation (건천화된 농촌소하천의 시·공간적 수문 수질 특성분석)

  • Lee, Ye Eun;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.177-186
    • /
    • 2013
  • The purpose of this study was to analyze the temporal and spatial characteristics of the stream flow of small rural streams for investigating the status of stream depletion located downstream of irrigation reservoir. Bonghyun and Hai reservoirs and each downstream were selected for this study. Streamflow was measured for 8 stations downstream from two reservoirs from 2010 to 2012. The water quality samples were collected monthly from the 8 stream stations and 2 reservoir stations from 2011 to 2012. The stream depletion was found in most of the downstream of reservoirs for the non-irrigation period and even in the irrigation period when there were a lot of antecedent precipitation. We found that the stream segments where there were few streamflow, vegetation covers the stream and block the streamflow which makes the stream lost its original function as a stream. Water quality monitoring results of Bonghyun stream indicated that the concentration of SS, Turbidity, TOC, COD were decreased as the stream flows from the reservoir to downstream while the TN and TP were increased. The correlation analysis for water quality data indicated that the correlation between T-N and T-P was high for Bonghyeon and Sukji streams, respectively. Continuous monitoring for rural streams located in downstream of reservoirs are required to quantify the status of stream flow depletion and determine the amount of environmental flows.

A Study on the Extraction of Flood Inundated Scar of Rural Small Stream Area Using RADARSAT SAR Images (RADARSAT SAR 영상을 이용한 농촌지역 소하천주변의 침수피해지역 추정 연구)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.969-976
    • /
    • 2006
  • The purpose of this study is to trace the flood inundation area around rural small stream by using RADARSAT image because it has the ability of acquiring data during storm period irrespective of rain and cloud. For the storm August 9, 1998 in the Anseong-cheon watershed, three RADARSAT images before, just after and after the storm were used. After ortho-rectification using 5 m DEM, two methods of RGB composition and ratio were tried and found the inundated area in the tributary stream, the Seonghwan-cheon and the Hakjeong-cheon. The inundated area had occurred at the joint area of two streams, thus the floodwater overflowed bounding discharge capacity of the stream. The progression of damage areas were stopped by the local road and farm road along the paddy. The result can be used to acquire the flood inundation data scattered as a small scale in rural area.

Review on the Improvement Works of Ecological Stream in Rural Areal - A Focused on Sijeon-ri Dogo-myeon Asan City - (농촌지역 하천정비공사 실태와 제언 -아산시 도고면 시전리를 대상으로-)

  • Nam, Yun-Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.2
    • /
    • pp.51-58
    • /
    • 2015
  • 10 years ago, in Sijeon-ri, Dogo-myeon, Asan-si, the existing stream was repaired to develope Mt. Dogo trail and irrigation systems through road expansion pavement construction and small stream repair construction. The trees such as persimmon and willow are eliminated that rowed on both sides of the stream and dredging work to dig the rock and sand have been performed. As a result, wide asphalt road was built, also flood damage worries were reduced. 10 years passed and now, how did local residents think about the stream repaired before and after? Village residents, public officials, and the stream construction engineer were interviewed. Villagers indicated a problems that brook became a place where water peppers were taking over and water was stagnating due to the slow velocity so nothing could live and natural landscape like a wash place and the cascade disappeared, because rock and sand were taken out brought soil into the brook. Public officials and engineers were aware of the problems at the time of the stream. Now that construction is completed after 10 years, Both realistically and budgetary to restoration would be difficult. However, it is necessary to seek for waterfront space which can be restored or replaced by a part of the stream like similarly before. In addition, it is necessary to restore to the progression of a natural stream which connect with stairs(or slope) - small waterfalls - pools - wash place. In this paper, we hope to take a lesson from the Sijeon-ri model and make rural stream construction be prepared with consideration about not only distinct characteristics of specific area but also the opinion of local resident.

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

A Study on the Degree of Pollution of Stream and Reservoir Sediments in Rural Area (농촌 중.소 하천 및 저수지 퇴적물의 오염현황)

  • Chang, Pyoung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.2 s.19
    • /
    • pp.1-6
    • /
    • 2003
  • This study was performed to investigate the degree of pollution of sediments of stream and reservoir in rural area. A series of field investigations were carried out for Kyongki-do area and chemical analysis were performed for sediment samples. It was found that some samples were heavily polluted with phenol and TPH and gave off a malodor. Soil Pollution Scores(SPSs) was determined for sediment samples. Some samples were classified to Soil Pollution Class(SPC) 2 and 3. For recycling and disposal of dredged sediments from stream and reservoirs, these polluted sediments should be carefully considered. In the environmental improvement operations of rural area, the degree of pollution of sediments of stream and reservoir are carefully investigated and suitable counterplan must be established.

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

A Study on the Extraction of Flood Inundated Scar of Rural Small Stream Using RADARSAT SAR Images (RADARSAT SAR 영상을 이용한 농촌 소하천주변의 침수피해지역 추정연구)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.300-305
    • /
    • 2005
  • To trace the flood inundation area around rural small stream, RADARSAT image was applied because it has the ability of acquiring data during storm period irrespective of rain and cloud. For the storm of 9 August, 1998 in Anseong-cheon watershed, three temporal RADARSAT images before, just after and after the storm were used. After ortho-rectification using 5 m DEM, two methods of RGB composition and ratio were tried and found the inundated area in the tributary stream, Seonghwan-cheon and Hakseong-cheon. The inundated area had occurred at the joint area of two streams, thus the floodwater overflowed bounding discharge capacity of the stream. The progression of damage areas were stopped by the local road and farm road along the paddy.

  • PDF

Watershed Scale Management Techniques of the Pollutants from Small Scale Livestock Ranches - Buffer Zone Selection for Natural Purification - (농촌 소유역 축산폐수의 유역관리기법 개발 - 자연정화처리를 위한 완충대 적지분석 -)

  • Kim, Seong-Joon;Lee, Nam-Ho;Yoon, Kwang-Sik;Hong, Seong-Gu;Lee, Yun-Ah
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.43-49
    • /
    • 2000
  • Buffer zone selection technique for natural purification of livestock wastewater within a small agricultural watershed was developed using Geographic Information Systems. The technique was applied to $4.12\;km^2$ watershed located in Gosan-myun, Ansung-gun which have 20 livestock farmhouses. As a necessary data for selecting process, feedlot site map, digital Elevation Model (DEM), stream network, soil and land use map were prepared. By using these data, wastewater moving-path tracing program from each feedlot to the stream was developed to get the basic topographic factors; average slope through the paths, distance to the nearest stream and watershed outlet. To identify the vulnerable feedlots for storm event, the grid-based storm runoff model (Kim, 1998; Kim et al., 1998) was adopted. The result helps to narrow down the suitable area of buffer zone, and finally by using subjective but persuasive conditions related to elevation, slope and land use, the suitable buffer zones were selected.

  • PDF