• Title/Summary/Keyword: rock tunnel

Search Result 2,163, Processing Time 0.026 seconds

A Case Study on the Design of Tunnel Excavation in Geological Anomalies (터널굴착시 지질이상대 통과방안 설계사례 연구)

  • Yoo, Joung-Hoon;Kim, Yang-Kyun;Chung, Chul-Hwa
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.341-348
    • /
    • 2011
  • As a result of the detailed site investigation performed for the design of a 4.3 km long tunnel, geological anomalies of four fault zones and a rock boundary were discovered on the tunnel route. Most of all, it was confirmed that pyrite, which may corrode steel material, is contained inside the geological anomalies, and pressured ground water flows out of the fault fractured zone. To overcome these geological conditions, antisulfur concrete for the concrete lining and anticorrosive swelling rock bolts are designed in the pyrite-containing sections. For the sections where a great amount of groundwater outflows, water blocking methods including grouting are applied according to the result of numerical analyses on the seepage. In addition, since the past earthquakes occurred around Korea have take place mainly near fault zones, seismic analyses were performed based on the Soil-Structure Interaction (SSI) concept and the strength of concrete tunnel lining is designed to be 27 MPa from 24 MPa in order to reinforce the tunnel structure.

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

Study on rock reinforcement process and the effect of produced strength right after rockbolt installation (록볼트의 타설 직후의 강도발현 과정 및 효과에 관한 연구)

  • Itoh, Jhun;Park, Hae-Geun;Kim, Dong-Wan;Kim, Jea-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 2003
  • For the huge section of tunnel, it is highly required to observe the role of each rock support and their effect of rock reinforcement in order to investigate more reasonable rock support structure. Especially for unstable tunnel situation with no shotcrete strength right after an excavation, sufficient investigation is needed for rock support structure. In this paper, we clarify the relations of compressive strength and material age, cohesion strength and material age, and cohesion stiffness and material age of grout with time-dependence through tests and numerical analysis simulation with trial rock mass considering hardening of bolt grouting material. By means of this process, effect of rock reinforcement for rockbolt is investigated right after an excavation and modelling and physical constants of young aged rockbolts are obtained. Additionally, the effect of rock reinforcement with hydraulic tensile friction bolt is examined right after an excavation, which grout effect is no need to be waited.

  • PDF

Rock-support Interaction behavior for Ground Condition Based on Numerical Modelling (암반조건에 따른 암반-지보 반응거동의 수치해석적 연구)

  • 전양수;한공창;신중호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.155-161
    • /
    • 2000
  • It is very important to control the final load that acts on a support system, in tunnel engineering. A reliable analysis is needed to carry out technically reasonable design and safe construction. Also, a series of procedures of construction and the rock-support interaction behavior must be considered. Most existing studies have been performed as the limited analysis based on the simplified assumption. In this study, through the analysis of a circular tunnel using a 2-D finite differential code, the rook-support interaction behaviors in the variation of rock and stress conditions are analyzed and compared with the results from the closed form solutions. Consequently, more realistic rock-support interaction curves are obtained by including the effects of initial stresses and rock condition. These cures are very useful to predict the required support pressure in the initial design stage.

  • PDF

Borehole Heater Test at KAERI Underground Research Tunnel (지하처분연구시설(KURT)에서의 시추공 히터 시험)

  • Kwon, S.;Lee, C.;Yoon, C.H.;Jeon, S.W.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • In this study, an in situ heater test for investigating the thermo-mechanical behavior related to heat flow was carried out. It was the first in situ heater test in Korea. For the test, an adequate design of heater, observation sensors, and data logging system was developed and installed with a consideration of the site condition and the test purposes. It was possible to observe that steep joints are overwhelmingly developed in the test area from a joint survey. The major rock and rock mass properties at the test site could be determined from the thermal and mechanical laboratory tests using the rock cores from the site. From the measured rock temperature distribution, it was possible to observe the influence of the rock joints and the heat flow through tunnel wall. When the heater temperature was maintained as $90^{\circ}C$, the rock temperature at 0.3 m from the heater hole was increased up to $40^{\circ}C$.

Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data (시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석)

  • Son, Moorak;Ryu, Jaeha;Ahn, Sungsoo;Hwang, Youngcheol;Park, Duhee;Moon, Duhyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.23-32
    • /
    • 2015
  • This study examined blast testing measurement data which had been obtained from 97 field sites in Korea to investigate the comprehensive characteristics of rock blasting-induced vibration focusing on the effect of excavation types (tunnel, bench) and rock types. The measurement data was from the testing sites mostly in Kangwon province and Kyungsang province and rock types were granite, gneiss, limestone, sand stone, and shale in the order of number of data. The study indicated that the blasting-induced vibration velocity was affected by the excavation types (tunnel, bench) and bench blasting induced higher velocity than tunnel blasting. In addition, the vibration velocity was also highly affected by the rock types and therefore, it can be concluded that rock types should be considered in the future to estimate a blasting-induced vibration velocity. Furthermore, the pre-existing criteria was compared with the results of this study and the comparison indicated that there was a discernable difference except for tunnel blasting results based on the square root scaling and therefore, further studies and interests, which include the effects of rock strength, joint characteristics, geological formation, excavation type, power type, measurement equipment and method, might be necessarily in relation to the estimation of blasting-induced vibration velocity in rock mass.

Modeling the Effect of Water, Excavation Sequence and Reinforcement on the Response of Tunnels

  • Kim, Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.161-176
    • /
    • 1999
  • A powerful numerical method that can be used for modeling rock-structure interaction is the Discontinuous Deformation Analysis (D D A) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the D D A method have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured rock. This paper presents three new extensions to the D D A method. The extensions consist of hydro-mechanical coupling between rock blocks and steady water flow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the D D A method with the new extensions are presented. Simulations of the underground excavation of the \ulcornerUnju Tunnel\ulcorner in Korea were carried out to evaluate the influence of fracture flow, excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture flow and improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the D D A program with the three new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Case Study on the Tunnel Collapse at the Shallow Depth (NATM터널 저토피 구간에서의 막장붕락 사례연구)

  • Baek Ki-Hyun;Roh Jong-Ryun;Kim Yong-Il;Cho Sang-Kook;Hwang Nag-Youn
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.102-110
    • /
    • 2005
  • ○ ○ tunnel that is located at Iksan - Jangsu freeway ○ ○, has collapsed during construction at the valley with shallow depth. Although, the site investigations, such as TSP, drilling exploration and so of indicated the presence of discontinuities in this section. The RMR was upgraded and the construction were carried out because that not only actual rock qualities were relatively good during construction but also the tunnel foe was stabilized. However, the tunnel was collapsed at the same time blasting of full face, and surface and underground water was infiltrated due to the settlement of the upper part of the tunnel face. To restore the collapsed section, 3-d tunnel stability analysis was performed and suitable reinforcement methods were chosen. The cavity of the upper tunnel face was stabilized by means of UAM and ALC injection. And the settlement was restored using L.W grouting method.

Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing

  • Seo, Seunghwan;Lim, Hyungsung;Chung, Moonkyung
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.457-470
    • /
    • 2021
  • In this study, the pull-out behavior of a tunnel-type anchorage for suspension bridges was investigated using experimental tests and image processing analyses. The study focused on evaluating the initial failure behavior and failure mode of the tunnel-type anchorage. In order to evaluate the failure mode of tunnel-type anchorage, a series of scaled model tests were conducted based on the prototype anchorage of the Ulsan Grand Bridge. In the model tests, the anchorage body and surrounding rocks were fabricated using a gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests demonstrate that the tunnel-type anchorage underwent a wedge-shaped failure. In addition, the failure mode changed according to the differences in the physical properties of the surrounding rock and the anchorage body and the size of the anchor plate. The size of the anchor plate was found to be an important parameter that determines the failure mode. However, the difference in physical properties between the surrounding rock and the anchorage body did not affect its size. In addition, this study analyzed the initial failure behavior of the tunnel-type anchorage through image analysis and confirmed that the failure was sequentially transferred from the inside of the tunnel to the surrounding rock according to the image analysis. The reasonable failure mode for the design of the tunnel-type anchorage should be wedge-type rather than pull-out type.

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey (전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구)

  • Lee, JunHo;Kang, Minkyu;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.451-468
    • /
    • 2021
  • Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.