• Title/Summary/Keyword: rock physics model

Search Result 13, Processing Time 0.026 seconds

Rock Physics Modeling: Report and a Case Study (암석 물리 모델링: 기술 보고 및 적용 사례)

  • Lee, Gwang H.
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.225-242
    • /
    • 2016
  • Rock physics serves as a useful tool for seismic reservoir characterization and monitoring by providing quantitative relationships between rock properties and seismic data. Rock physics models can predict effective moduli for reservoirs with different mineral components and pore fluids from well-log data. The distribution of reservoirs and fluids for the entire seismic volume can also be estimated from rock physics models. The first part of this report discusses the Voigt, Reuss, and Hashin-Shtrikman bounds for effective elastic moduli and the Gassmann fluid substitution. The second part reviews various contact models for moderate- to high-porosity sands. In the third part, constant-cement model, known to work well for the sand that gradually loses porosity with deteriorating sorting, was applied to the well-log data from an oil field in the North Sea. Lastly, the rock physics template constructed from the constant-cement model and the results from the prestack inversion of 2D seismic data were combined to predict the lithology and fluid types for the sand reservoir of this oil field.

Rock physics modeling in sand reservoir through well log analysis, Krishna-Godavari basin, India

  • Singha, Dip Kumar;Chatterjee, Rima
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.99-117
    • /
    • 2017
  • Rock physics modeling of sandstone reservoir from gas fields of Krishna-Godavari basin represents the link between reservoir parameters and seismic properties. The rock physics diagnostic models such as contact cement, constant cement and friable sand are chosen to characterize reservoir sands of two wells in this basin. Cementation is affected by the grain sorting and cement coating on the surface of the grain. The models show that the reservoir sands in two wells under examination have varying cementation from 2 to more than 6%. Distinct and separate velocity-porosity and elastic moduli-porosity trends are observed for reservoir zones of two wells. A methodology is adopted for generation of Rock Physics Template (RPT) based on fluid replacement modeling for Raghavapuram Shale and Gollapalli Sandstones of Early Cretaceous. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and P-impedance template, generated for this above formations is able to detect shale, brine sand and gas sand with varying water saturation and porosity from wells in the Endamuru and Suryaraopeta gas fields having same shallow marine depositional characters. This RPT predicted detection of water and gas sands are matched well with conventional neutron-density cross plot analysis.

Formation Estimation of Shaly Sandstone Reservoir using Joint Inversion from Well Logging Data (복합역산을 이용한 물리검층자료로부터의 셰일성 사암 저류층의 지층 평가)

  • Choi, Yeonjin;Chung, Woo-Keen;Ha, Jiho;Shin, Sung-ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Well logging technologies are used to measure the physical properties of reservoirs through boreholes. These technologies have been utilized to understand reservoir characteristics, such as porosity, fluid saturation, etc., using equations based on rock physics models. The analysis of well logs is performed by selecting a reliable rock physics model adequate for reservoir conditions or characteristics, comparing the results using the Archie's equation or simandoux method, and determining the most feasible reservoir properties. In this study, we developed a joint inversion algorithm to estimate physical properties in shaly sandstone reservoirs based on the pre-existing algorithm for sandstone reservoirs. For this purpose, we proposed a rock physics model with respect to shale volume, constructed the Jacobian matrix, and performed the sensitivity analysis for understanding the relationship between well-logging data and rock properties. The joint inversion algorithm was implemented by adopting the least-squares method using probabilistic approach. The developed algorithm was applied to the well-logging data obtained from the Colony gas sandstone reservoir. The results were compared with the simandox method and the joint inversion algorithms of sand stone reservoirs.

A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases

  • Ahmad, Qazi Adnan;Wu, Guochen;Zong, Zhaoyun;Wu, Jianlu;Ehsan, Muhammad Irfan;Du, Zeyuan
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.327-338
    • /
    • 2020
  • The role of precise prediction of subsurface fluids and discrimination among them cannot be ignored in reservoir characterization and petroleum prospecting. A suitable rock physics model should be build for the extraction of valuable information form seismic data. The main intent of current work is to present a rock physics model to analyze the characteristics of seismic wave propagating through a cracked porous rock saturated by a three phase fluid. Furthermore, the influence on wave characteristics due to variation in saturation of water, oil and gas were also analyzed for oil and water as wet cases. With this approach the objective to explore wave attenuation and dispersion due to wave induce fluid flow (WIFF) at seismic and sub-seismic frequencies can be precisely achieved. We accomplished our proposed approach by using BISQ equations and by applying appropriate boundary conditions to incorporate heterogeneity due to saturation of three immiscible fluids forming a layered system. To authenticate the proposed methodology, we compared our results with White's mesoscopic theory and with the results obtained by using Biot's poroelastic relations. The outcomes reveals that, at low frequencies seismic wave characteristics are in good agreement with White's mesoscopic theory, however a slight increase in attenuation at seismic frequencies is because of the squirt flow. Moreover, our work crop up as a practical tool for the development of rock physical theories with the intention to identify and estimate properties of different fluids from seismic data.

Analysis of Seismic Velocity Change and AVO Response Depending on Saturation of Kerogen and GOR in Shale Reservoirs (셰일 저류층에서 케로젠, GOR 변화에 따른 속도 변화 및 AVO 반응 분석)

  • Choi, Junhwan;Lee, Jaewook;Byun, Joongmoo;Kim, Bona;Kim, Soyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Recently, the studies about rock physics model (RPM) in shale reservoir are widely performed. In shale reservoir, the degree of the maturity can be estimated by kerogen and GOR (Gas-Oil Ratio). The researches on the rock physics model of shale reservoir with the amount of kerogen have been actively carried out but not with GOR. Thus, in this study, we analyzed the changes in seismic velocity and density, and AVO (Amplitude Variation with Offset) response depending on changes in GOR and the amount of kerogen. Since the shale consists of plate-like particles, it has vertical transverse isotropy (VTI). Therefore we estimated the seismic velocity and density by using Backus averaging method and analyzed AVO responses based on these estimated properties. The results of analysis showed that the changes in the velocity with the GOR variation are small but the velocity changes with the variation in kerogen amount are relatively larger. In case, GOR 180 (Litre/Litre) which is boundary between heavy oil and light oil, when volume fraction of kerogen increased from 5% to 35%, the P-wave velocity normal to the layering increased 51%. That is, it helps estimating maturity of kerogen through the velocity. Meanwhile, when rates of oil-gas mixture are large, the effect of GOR variation on the velocity change became larger. In case volume fraction of kerogen is 5%, the P-wave velocity normal to the layering was estimated $1.46km/s^2$ in heavy oil (GOR 40) but $1.36km/s^2$ in light oil (GOR 300). The AVO responses analysis showed class 4 regardless of the GOR and amount of kerogen because variation of poisson's ratio is small. Therefore, shale reservoir has possibility to have class 4.

A comparison study between the realistic random modeling and simplified porous medium for gamma-gamma well-logging

  • Fatemeh S. Rasouli
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1747-1753
    • /
    • 2024
  • The accurate determination of formation density and the physical properties of rocks is the most critical logging tasks which can be obtained using gamma-ray transport and detection tools. Though the simulation works published so far have considerably improved the knowledge of the parameters that govern the responses of the detectors in these tools, recent studies have found considerable differences between the results of using a conventional model of a homogeneous mixture of formation and fluid and an inhomogeneous fractured medium. It has increased concerns about the importance of the complexity of the model used for the medium in simulation works. In the present study, we have suggested two various models for the flow of the fluid in porous media and fractured rock to be used for logging purposes. For a typical gamma-gamma logging tool containing a 137Cs source and two NaI detectors, simulated by using the MCNPX code, a simplified porous (SP) model in which the formation is filled with elongated rectangular cubes loaded with either mineral material or oil was investigated. In this model, the oil directly reaches the top of the medium and the connection between the pores is not guaranteed. In the other model, the medium is a large 3-D matrix of 1 cm3 randomly filled cubes. The designed algorithm to fill the matrix sites is so that this realistic random (RR) model provides the continuum growth of oil flow in various disordered directions and, therefore, fulfills the concerns about modeling the rock textures consist of extremely complex pore structures. For an arbitrary set of oil concentrations and various formation materials, the response of the detectors in the logging tool has been considered as a criterion to assess the effect of modeling for the distribution of pores in the formation on simulation studies. The results show that defining a RR model for describing heterogeneities of a porous medium does not effectively improve the prediction of the responses of logging tools. Taking into account the computational cost of the particle transport in the complex geometries in the Monte Carlo method, the SP model can be satisfactory for gamma-gamma logging purposes.

Petrophysical Joint Inversion of Seismic and Electromagnetic Data (탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산)

  • Yu, Jeongmin;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.

Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field

  • Ji, Youjun;Li, Xiaoyu
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.677-686
    • /
    • 2018
  • Aimed at serious casing damage problem during the process of oilfield development by injecting water, based on seepage mechanics, fluid mechanics and the theory of rock mechanics, the multi-physics coupling theory was also taken into account, the mathematical model for production of petroleum with water flooding was established, and the method to solve the coupling model was presented by combination of Abaqus and Eclipse software. The Q9G3 block in Jibei oilfield was taken for instance, the well log data and geological survey data were employed to build the numerical model of Q9G3 block, the method established above was applied to simulate the evolution of seepage and stress. The production data was imported into the model to conduct the history match work of the model, and the fitting accuracy of the model was quite good. The main mechanism of casing damage of the block was analyzed, and some wells with probable casing damage problem were pointed out, the displacement of the well wall matched very well with testing data of the filed. Finally, according to the simulation results, some useful measures for preventing casing damage in Jibei oilfield was proposed.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Modelling issues in the development of a simulation game for teaching construction management

  • Saad Al-Jibouri;Michael Mawdesley
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.774-780
    • /
    • 2009
  • Simulation is becoming increasingly popular in construction for training, planning and for assessment of projects. There are, however, significant problems inherent in simulating construction which are not common to other simulations. This paper describes the development and use of computer-based game for teaching and learning of some aspects of construction project management. It is concerned with the development of a model used to simulate the construction of a rock- and clay-fill dam. It includes detailed physical modelling of the performance of individual pieces of equipment and their interaction with the ground, the geography of the project and the weather in which the equipment operates. The behaviour of all of the individual pieces of equipment when acting as fleets is also discussed. The paper also describes the modelling issues of non-technical aspects of earthmoving operations. These include environmental impact, safety, quality and risks. The problems of integrating these with the physics-based models of the equipment performance are discussed. The paper also draws on real experience of using the game in classes in three universities in different countries.

  • PDF