DOI QR코드

DOI QR Code

Formation Estimation of Shaly Sandstone Reservoir using Joint Inversion from Well Logging Data

복합역산을 이용한 물리검층자료로부터의 셰일성 사암 저류층의 지층 평가

  • Choi, Yeonjin (Korea Maritime and Ocean University, Department of Energy & Resources Engineering) ;
  • Chung, Woo-Keen (Korea Maritime and Ocean University, Department of Energy & Resources Engineering) ;
  • Ha, Jiho (Korea Institude of Geoscience and Mineral Resources (KIGAM) Pohang Branch) ;
  • Shin, Sung-ryul (Korea Maritime and Ocean University, Department of Energy & Resources Engineering)
  • 최연진 (한국해양대학교 에너지자원공학과) ;
  • 정우근 (한국해양대학교 에너지자원공학과) ;
  • 하지호 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 신성렬 (한국해양대학교 에너지자원공학과)
  • Received : 2018.08.03
  • Accepted : 2019.02.28
  • Published : 2019.02.28

Abstract

Well logging technologies are used to measure the physical properties of reservoirs through boreholes. These technologies have been utilized to understand reservoir characteristics, such as porosity, fluid saturation, etc., using equations based on rock physics models. The analysis of well logs is performed by selecting a reliable rock physics model adequate for reservoir conditions or characteristics, comparing the results using the Archie's equation or simandoux method, and determining the most feasible reservoir properties. In this study, we developed a joint inversion algorithm to estimate physical properties in shaly sandstone reservoirs based on the pre-existing algorithm for sandstone reservoirs. For this purpose, we proposed a rock physics model with respect to shale volume, constructed the Jacobian matrix, and performed the sensitivity analysis for understanding the relationship between well-logging data and rock properties. The joint inversion algorithm was implemented by adopting the least-squares method using probabilistic approach. The developed algorithm was applied to the well-logging data obtained from the Colony gas sandstone reservoir. The results were compared with the simandox method and the joint inversion algorithms of sand stone reservoirs.

물리검층은 시추공을 이용하여 저류층의 여러 물성을 측정하는 것으로, 암석물리모델 관계식을 이용하여 공극률, 유체포화도 등의 저류층 특성을 파악하는데 활용되어 왔다. 물리검층자료의 분석은 저류층의 조건과 특성에 맞는 적당한 암석물리모델을 선정하고, Archie식이나 시만독스법 등을 활용하여 얻은 결과를 비교함으로써 가장 신뢰성 있는 저류층 물성을 결정하게 된다. 이 연구에서는 기존에 제시된 사암 저류층에서의 물리검층자료 복합역산 알고리즘을 바탕으로, 셰일성 사암 저류층의 물성을 평가하기 위한 복합역산 알고리즘을 개발하였다. 셰일의 양을 변수로 하는 암석물리모델 관계식을 제안하였으며, 야코비 행렬을 구성하고 민감도 분석을 수행하여 물리검층자료와 모델변수의 관계를 파악하였다. 확률론적 방법을 이용한 최소제곱법을 적용하여 복합역산을 수행하였다. 개발한 알고리즘은 Colony 가스사암 지역에서 얻은 물리검층자료에 적용하였으며, 그 결과를 기존에 활용되는 시만독스법과 사암 저류층에서의 복합역산 결과와 비교해 보았다.

Keywords

MRTSBC_2019_v22n1_1_f0001.png 이미지

Fig. 1. Rock physics modeling of P-wave velocity for (a) cleans and, (b) shaly sand reservoir model.

MRTSBC_2019_v22n1_1_f0002.png 이미지

Fig. 2. Rock physics modeling of conductivity for (a) (a) clean sand and (b) shaly sand reservoir models.

MRTSBC_2019_v22n1_1_f0003.png 이미지

Fig. 3. Rock physics modeling of density for (a) clean sand and(b) shaly sand reservoir models.

MRTSBC_2019_v22n1_1_f0004.png 이미지

Fig. 4. Flowchart for joint inversion procedures.

MRTSBC_2019_v22n1_1_f0005.png 이미지

Fig. 5. Absolute values of eigenvectors in the model space.

MRTSBC_2019_v22n1_1_f0006.png 이미지

Fig. 6. Stratigraphic summary of the Colony sand units (modified after Alberta Geological Survey (2015)).

MRTSBC_2019_v22n1_1_f0007.png 이미지

Fig. 7. Well log data of Colony gas sand.

MRTSBC_2019_v22n1_1_f0008.png 이미지

Fig. 8. Estimation of reservoir properties using the simandoux method.

MRTSBC_2019_v22n1_1_f0009.png 이미지

Fig. 9. Measured and calculated data for the joint inversion in the shaly sand reservoir model.

MRTSBC_2019_v22n1_1_f0010.png 이미지

Fig. 10. Estimation of reservoir properties using the joint inversion in the shaly sand reservoir model.

MRTSBC_2019_v22n1_1_f0011.png 이미지

Fig. 11. Measured and calculated data for joint inversion in sand reservoir model.

MRTSBC_2019_v22n1_1_f0012.png 이미지

Fig. 12. Estimation of reservoir properties using the joint inversion in the sand reservoir model.

MRTSBC_2019_v22n1_1_f0013.png 이미지

Fig. 13. Estimation of reservoir properties for the Colony gas sand.

Table 1. Rock and fluid parameters in a reservoir for rock physics modeling.

MRTSBC_2019_v22n1_1_t0001.png 이미지

Table 2. Average reservoir properties at each zone using the simandoux method.

MRTSBC_2019_v22n1_1_t0002.png 이미지

Table 3. Rock and fluid parameters for the joint inversion in the shaly sand reservoir.

MRTSBC_2019_v22n1_1_t0003.png 이미지

Table 4. Average reservoir properties at each zone using the joint inversion in the shaly sand reservoir.

MRTSBC_2019_v22n1_1_t0004.png 이미지

Table 5. Average reservoir properties at each zone using the joint inversion in the sand reservoir.

MRTSBC_2019_v22n1_1_t0005.png 이미지

Table 6. Average porosities and water saturations at each zone.

MRTSBC_2019_v22n1_1_t0006.png 이미지

References

  1. Alberta Geological Survey, 2015, Alberta table of formations, Alberta Energy Regulator
  2. Asquith, G., and Krygowski, D., 2004, Basic well log analysis, 2nd Ed., Am. Assoc. Pe. Geol.
  3. Backus, G. E., and Gilbert, J. F., 1967, Numerical application of a formalism for geophysical inverse problems, Geophys. J. Int., 13(1-3), 247-276. https://doi.org/10.1111/j.1365-246X.1967.tb02159.x
  4. Calvert, T. J., Raw, R. N., and Wells, L. E., 1977, Electromagnetic propagation-A new dimension logging, Paper SPE 6542 presented at the Annual California Regional Meeting, Soc. of Pet. Eng., Bakersfield, California, April 13-15.
  5. Dell'Aversana, P., Bernasconi, G., Miotti, F., and Rovetta, D., 2011, Joint inversion of rock properties from sonic, resistivity and density well-log measurements, Geophys. Prospect., 59(6), 1144-1154. https://doi.org/10.1111/j.1365-2478.2011.00996.x
  6. Jeong, S., Seol, S. J., and Byun, J., 2015, Effective estimation of porosity and fluid saturation using joint inversion result of seismic and electromagnetic data. Geophys. and Geophys. Explor., 18(2), 54-63 (in Korean with English abstract). https://doi.org/10.7582/GGE.2015.18.2.054
  7. Jupp, D. L. B., and Vozoff, K., 1975, Stable iterative methods for the inversion of geophysical data, Geophys. J. Int., 42(3), 957-976. https://doi.org/10.1111/j.1365-246X.1975.tb06461.x
  8. Kim, J. H., Yi, M. J., and Hwang, S. H., 2004, Automatic inversion of normal resistivity logs for horizontally stratified Earth, J. Korea Inst. Mineral Mining Eng., 41(4), 271-284 (in Korean with English abstract).
  9. Larionov, V. V., 1969, Borehole radiometry: Moscow, U.S.S.R., Nedra.
  10. Lee, D. G., Seo, K., and Lim, J. S., 2011, 3D Geostatical modeling using well data of oil sand reservoir in the Leismer Field, Canada, J. Korea Inst. Mineral Mining Eng., 48(6), 687-700 (in Korean with English abstract).
  11. Lee, G. H., 2016, Rock physics modeling: Report and a case study, Econ. Environ. Geol., 49(3), 225-242 (in Korean with English abstract). https://doi.org/10.9719/EEG.2016.49.3.225
  12. Lichtenecker, K., and Rother, K., 1931, Die herleitung des logarithmischen mischungs-gesetzes aus allegemeinen prinzipien der stationaren stromung, Phys. Z., 32, 255-260.
  13. Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: Tools for seismic analysis of porous media, Cambridge University Press.
  14. Park, C., and Nam, M. J., 2014, A review on constructing seismic rock physics models based on gassmann's equation for reservoir fluid substitution, J. Korea Inst. Mineral Mining Eng., 51(3), 448-467 (in Korean with English abstract).
  15. Putnam, P. E., and Oliver, T. A., 1980, Stratigraphic traps in channel sandstones in the Upper Mannville (Albian) of eastcentral Alberta, B. Can. Petrol. Geol., 28(4), 489-508.
  16. Putnam, P. E., 1982, Aspects of the petroleum geology of the Lloydminster heavy oil fields, Alberta and Saskatchewan, B. Can. Petrol. Geol., 30(2), 81-111.
  17. Quijada, M. F., 2009, Estimating elastic properties of sandstone reservoirs using well logs and seismic inversion, MSc thesis, University of Calgary, 27p
  18. Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time to porosity transform, 21st Annual Logging Symposium, Transactions of the Society of Professinal Well Log Analysis, Expanded Abstract, 546p.
  19. Schon, J. H., 2015, Physical propeties of rocks: Fundamentals and principles of petrophysics, 2nd Ed., Elsevier.
  20. Smith, T. M., Sondergeld, C. H., and Rai C. S., 2003, Gassmann fluid substitutions: A tutorial., Geophysics., 68(2), 430-440. https://doi.org/10.1190/1.1567211
  21. Son, H. R., Lee, W. S., and Kim, H. T., 2007, Rock properties evaluation of tight gas reservoir using geophysical well logs in chimney butte field, wyoming, J. Korea Inst. Mineral Mining Eng., 44(5), 418-427 (in Korean with English abstract).
  22. Tarantola, A., 2005, Inverse problem theory., SIAM.