DOI QR코드

DOI QR Code

Petrophysical Joint Inversion of Seismic and Electromagnetic Data

탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산

  • Yu, Jeongmin (Department of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Byun, Joongmoo (Department of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Seol, Soon Jee (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • 유정민 (한양대학교 자원환경공학과) ;
  • 변중무 (한양대학교 자원환경공학과) ;
  • 설순지 (한양대학교 자원환경공학과)
  • Received : 2017.09.11
  • Accepted : 2017.12.27
  • Published : 2018.02.28

Abstract

Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.

탄성파 역산은 유가스 집적이 가능한 구조의 탐지에 고해상도의 분해능을 가지는 반면, 인공송신원을 이용한 해양전자탐사 역산은 유가스의 직접적인 탐지가 가능하다. 이런 이종의 물리탐사자료를 함께 이용한 복합역산은 단일 역산의 불확실성을 줄일 수 있고, 각각의 탐사자료가 가지는 장점 또한 함께 이용할 수 있다. 이 연구에서는 암석물리모델을 이용하여 탄성파탐사자료와 전자탐사자료가 동시에 최적화 될 때의 저류층의 물성값을 추출할 수 있는 동시복합역산 알고리듬을 개발하였다. 상호구배(cross-gradient) 방법을 적용하여 구조적인 해상도를 향상시켰으며, 최대우도추정법을 이용한 상대 가중치를 적용하여 자료간의 균형을 조절하였다. 개발된 알고리듬을 단순한 고립 가스층 모델에 적용한 결과, 동시복합역산으로 고해상도의 저류층 물성 추출이 가능함을 확인하였다. 하지만 오일 저류층을 모사한 배사구조의 모델에서는 적용된 모델 가중 행렬에 따라 전혀 다른 결과를 획득할 수 있었다. 따라서, 기존의 알고리듬을 각각의 모델 변수에 적합한 모델 가중 행렬을 사용하도록 수정하여, 평활화 기법과 감쇠항 기법을 수포화율과 공극률에 각각 적용하였다. 개선된 알고리듬을 오일 저류층 모델에 다시 적용한 결과, 저류층의 공극률과 수포화율을 성공적으로 추출할 수 있었다. 개발한 복합역산 알고리듬을 이용하여 획득한 결과는 유가스전 저류층의 매장량 계산에 직접적인 정보로 사용될 수 있을 것이다.

Keywords

References

  1. Abubakar, A., Habashy, T. M., Druskin, V. L., Knizhnerman, L., and Alumbaugh, D., 2008, 2.5D forward and inversion modeling for interpreting low-frequency electromagnetic measurements, Geophysics, 73, F165-F177. https://doi.org/10.1190/1.2937466
  2. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, 146, 54-62. https://doi.org/10.2118/942054-G
  3. Brown, R., and Korringa, J., 1975, On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid, Geophysics, 40, 608-616. https://doi.org/10.1190/1.1440551
  4. Constable, S., 2010, Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75, 75A67-75A81. https://doi.org/10.1190/1.3483451
  5. Drahos, D., 2008, Determining the objective function for geophysical joint inversion, Geophysical Transactions, 45, 105-121.
  6. Gallardo, L. A., and Meju, M. A., 2003, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data, Geophys. Res. Lett., 30.
  7. Gao, G, Abubakar, A., and Habashy, T., 2010, Joint inversion of crosswell electromagnetic and seismic data for reservoir petrophysical parameters, SPE Ann. Tech. Conf. Exhibit., SPE, 135307.
  8. Gao, G., Abubakar, A., and Habashy, T., 2012, Joint petrophysical inversion of electromagnetic and full-waveform seismic data, Geophysics, 77, WA3-WA18. https://doi.org/10.1190/geo2011-0157.1
  9. Gassmann, F., 1951, Uber die Elastizitat poroser Medien: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1-23.
  10. Hashin, Z., and Shtrikman, S., 1963, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mechan. Phys. Solids, 11, 127-140 https://doi.org/10.1016/0022-5096(63)90060-7
  11. Hu, W., Abubakar, A., and Habashy, T. M., 2009a, Joint electromagnetic and seismic inversion using structure constraints, Geophysics, 74, R99-R109. https://doi.org/10.1190/1.3246586
  12. Huber, P. J., 1981, Robust statistics, John Wiley & Sons.
  13. Jeong, S., Byun, J., and Seol, S. J., 2014, Joint electromagnetic inversion with structure constraints using full-waveform inversion result, Geophys. and Geophys. Explor., 17, 187-201 (in Korean with English abstract). https://doi.org/10.7582/GGE.2014.17.4.187
  14. Jeong, S., Byun, J., and Seol, S. J., 2015, Effective estimation of porosity and fluid saturation using joint inversion result of seismic and electromagnetic data, Geophys. and Geophys. Explor., 18, 54-63 (in Korean with English abstract). https://doi.org/10.7582/GGE.2015.18.2.054
  15. Ji, J., 2012, Robust inversion using biweight norm and its application to seismic inversion, Explor. Geophys., 43, 70-76.
  16. Kang, S., Seol, S. J., and Byun, J., 2012, A feasibility study of CO2 sequestration monitoring using the mCSEM method at a deep brine aquifer in a shallow sea, Geophysics, 77, E117-E126 https://doi.org/10.1190/geo2011-0089.1
  17. Kim, H. J., and Kim, Y. H., 2008, Lower and upper bounding constraint of model parameters in inversion of geophysical data, 77th Ann. Internat. Mtg., SEG Expanded Abstracts, 692-696.
  18. Kwon, T., Seol, S. J., and Byun, J., 2015, Efficient full-waveform inversion with normalized plane-wave data, Geophys. J. Int., 201, 53-60. https://doi.org/10.1093/gji/ggu498
  19. Noh, K., Kang, S., Seol, S. J., and Byun, J., 2012, Computation of apparent resistivity from marine controlled-source electromagnetic data for identifying the geometric distribution of gas hydrate, Geophys. and Geophys. Explor., 15, 75-84 (in Korean with English abstract). https://doi.org/10.7582/GGE.2012.15.2.075
  20. Nur, A., 1992, Critical porosity and the seismic velocities in rocks, EOS Transactions AGU, 73, 43-66.
  21. Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time-to-porosity transform, SPWLA 21st Annual Logging Symposium, 1-12.
  22. Scales, J. A., and Gersztenkorn, A., 1988, Robust methods in inverse theory, Inverse Probl., 4, 1071-1091. https://doi.org/10.1088/0266-5611/4/4/010
  23. Scales, John A., Paul Docherty, and Adam Gersztenkorn, 1990, Regularisation of nonlinear inverse problems: imaging the near-surface weathering layer, Inverse Probl., 6, 115. https://doi.org/10.1088/0266-5611/6/1/011
  24. Sen, P. N., Scala, C., and Cohen, M. H., 1981, A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads, Geophysics, 46, 781-795. https://doi.org/10.1190/1.1441215
  25. Van den Berg, P. M., and Abubakar, A., 2001, Contrast source inversion method: State of art, PIER, 34, 189-218. https://doi.org/10.2528/PIER01061103
  26. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1-WCC26 https://doi.org/10.1190/1.3238367
  27. Waxman, M. H., and Smits, M. J. L., 1968 electrical conductivities in oil bearing shaly sands, SPE, 8, 107-122. https://doi.org/10.2118/1863-A
  28. Wharton R. P., Hazen G. A., Rau R. N., and Best D. L., 1980, Electromagnetic propagation logging: Advances in technique and interpretation, SPE Ann. Tech. Conf. Exhibit., SPE, 9267.
  29. Wyllie, M. R. J., Gregory, A. R., and Gardner, L. W., 1956, Elastic Wave Velocities in Heterogeneous and Porous Media, Geophysics, 21, 41-70. https://doi.org/10.1190/1.1438217