DOI QR코드

DOI QR Code

Rock Physics Modeling: Report and a Case Study

암석 물리 모델링: 기술 보고 및 적용 사례

  • Lee, Gwang H. (Department of Energy Resources Engineering, Pukyong National University)
  • 이광훈 (부경대학교 에너지자원공학과)
  • Received : 2016.02.25
  • Accepted : 2016.06.04
  • Published : 2016.06.28

Abstract

Rock physics serves as a useful tool for seismic reservoir characterization and monitoring by providing quantitative relationships between rock properties and seismic data. Rock physics models can predict effective moduli for reservoirs with different mineral components and pore fluids from well-log data. The distribution of reservoirs and fluids for the entire seismic volume can also be estimated from rock physics models. The first part of this report discusses the Voigt, Reuss, and Hashin-Shtrikman bounds for effective elastic moduli and the Gassmann fluid substitution. The second part reviews various contact models for moderate- to high-porosity sands. In the third part, constant-cement model, known to work well for the sand that gradually loses porosity with deteriorating sorting, was applied to the well-log data from an oil field in the North Sea. Lastly, the rock physics template constructed from the constant-cement model and the results from the prestack inversion of 2D seismic data were combined to predict the lithology and fluid types for the sand reservoir of this oil field.

암석 물리(rock physics)는 암석의 물성과 탄성파 자료의 정량적인 연결 고리로서 저류암 특성화와 모니터링 등에 적용되는 중요한 도구이다. 암석 물리를 기반으로 시추공 검층 자료로부터 공극 유체와 구성 성분이 다양한 암석의 성질을 대표하는 유효 탄성 계수(effective elastic constants)를 모델링하여 탄성파 자료에 적용함으로서 탄성파 자료전체에 대한 저류암 분포와 공극 유체를 유추할 수 있다. 본 보고에서는 먼저 Voigt, Reuss, Hashin-Shtrikman의 유효 탄성 계수 한계값과 Gassmann 방정식을 이용한 유체 치환에 대해서 설명한 후에 공극률이 비교적 높은 저류 사암에 널리 적용되는 접촉(contact) 암석 물리 모델들을 소개했다. 그리고 접촉 암석 물리 모델 중에서 분포 깊이가 어느 정도 일정하고 공극률이 비교적 높은 사암에 적합한 것으로 알려진 일정 교결량(constant-cement) 모델을 북해 유전의 검층 자료에 적용하여 암석 물리 견본(rock physics template)을 완성했다. 마지막으로 이 암석 물리 견본과 현장 2D 탄성파 자료의 중합전 역산 결과로부터 이 유전의 저류암과 덮개암, 공극 유체 분포를 예측해 보았다.

Keywords

References

  1. Avseth, P. (2010) Explorational rock physics - The link between geological processes and geophysical observables, in: K. Bjorlykke (ed.) Petroleum Geoscience: From Sedimentary Environments to Rock Physics. Springer. 508p.
  2. Avseth, P., Jorstad, A., van Wijngaarden, A.-J. and Mavko, G. (2009) Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones.
  3. Avseth, P., Mukerji, T. and Mavko, G. (2005) Quantitative Seismic Interpretation: Applying Rock Physics to Reduce Interpretation Risk. Cambridge University Press, Cambridge, UK, 359p.
  4. Avseth, P., Dvorkin, J., Mavok, G. and Rykkje, J. (2000) Rock physics diagnostic of North Sea sands: Link between microstructure and seismic properties. Geophysical Research Letter, v.27, p.2761-2764. https://doi.org/10.1029/1999GL008468
  5. Batzle, M. and Wang, Z. (1992) Seismic properties of pore fluids. Geophysics, v.57, p.1396-1408. https://doi.org/10.1190/1.1443207
  6. Berge, P.A., Berryman, J.G. and Bonner, B.P. (1993) Influence of microstructure on rock elastic properties. Geophysical Research Letters, v.20, p.2619-2622 https://doi.org/10.1029/93GL03131
  7. Berryman, J.G. (1980) Long-wavelength propagation in composite elastic media. Journal of Acoustical Society of America, v.68, p.1890-1831. https://doi.org/10.1121/1.385181
  8. Berryman, J.G. (1992) Single-scattering approximations for coefficients in Biot's equations of poroelasticity. Journal of Acoustical Society of America, v.91, p.551-571. https://doi.org/10.1121/1.402518
  9. Berryman, J.G. (1995) Mixture of rock properties: Rock physics and phase relations. A Handbook of Physical Constants. American Geophysical Union Reference Shelf, v.3, p.205-228. https://doi.org/10.1029/RF003p0205
  10. Berryman, J.G. (1999) Origin of Gassmann's equations. Stanford Exploration Project, Report, v.102, p.187-192.
  11. Clearly, M.P., Chen, I.-W. and Lee, S.-M. (1980) Self-consistent techniques for heterogeneous media. American Society of Civil Engineers, v.106, p.861-887.
  12. Domenico, S.N. (1976) Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics, v.41, p.882-894. https://doi.org/10.1190/1.1440670
  13. Dvorkin, J. and Gutierrez, M. (2001) Textural sorting effect on elastic velocities, Part II: Elasticity of a bimodal grain mixture. Society of Exploration Geophysicists 71st Annual International Meeting, p.1764-1767.
  14. Dvorkin, J. and Gutierrez, M. (2002) Grain sorting, porosity, and elasticity. Petrophysics, v.43, p.185-196.
  15. Dvorkin, J., Nur, A. and Yin, H. (1994) Effective properties of cemented granular material. Mechanical Materials, v.18, p.351-366. https://doi.org/10.1016/0167-6636(94)90044-2
  16. Dvorkin, J., Mavko, G. and Nur, A. (1991) The effect of cementation on the elastic properties of granular material, Mechanics of Materials, v.12, p.207-217. https://doi.org/10.1016/0167-6636(91)90018-U
  17. Dvorkin, J. and Nur. A. (1996) Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics, v.61, p.1363-1370. https://doi.org/10.1190/1.1444059
  18. Dvorkin, J. and Nur, A. (2000) Critical-porosity models, in: A. Huffman and A. Nur (eds.), Pressure Regimes in Sedimentary Basins and Their Prediction: AAPG Memoir, 76, p.33-41.
  19. Dvorkin, J., Gutierrez, A. and Nur, A. (2002) On the university of diagenetic trends. The Leading Edge, v.21, p.40-43. https://doi.org/10.1190/1.1445846
  20. Garcia, X. and Medina, E.A. (2006) Hysteresis effects studied by numerical simulations: cyclic loading-unloading of a realistic sand model. Geophysics, v.71, p.F13-F20. https://doi.org/10.1190/1.2181309
  21. Gassmann, F. (1951) Uber die elastizitat poroser medien. Veirteljahrsschrift der Naturforschenden Gesellschaft in Zurich, v.96, p.1-23.
  22. Hampson, D.P., Russell, B.H. and Bankhead, B. (2005) Simultaneous inversion of pre-stack seismic data. 75th Annual International Meeting, SEG, Expanded Abstracts, v.24, p.1633-1637.
  23. Hashin, Z. and Shtrikman, S. (1963) A variational approach to the elastic behavior of multiphase materials. Journal of Mechanical and Physical Solids, v.11, p.127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  24. Jacoby, M., Dvorkin, J. and Liu, X. (1995) Elasticity of partially saturated frozen sand. Geophysics, v.61, p.288-293.
  25. Marion, D. (1990) Acoustical, mechanical and transport properties of sediments and granular materials. Unpublished Ph.D. thesis, Stanford University.
  26. Marion, D., Nur, A., Yin, H. and Han, D. (1992) Compressional velocity and porosity in sand-clay mixtures. Geophysics, v.57, p.554-563. https://doi.org/10.1190/1.1443269
  27. Maske, H.A., Gland, N., Johnson, D.L. and Schwartz, L.M. (2004) Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E L70, 061302.1-061302.19.
  28. Mavko, G. and Mukerji, T. (1995) Seismic pore space compressibility and Gassmann's relation. Geophysics, v.60, p.1743-1749. https://doi.org/10.1190/1.1443907
  29. Mavko, G., Mukerji, T. and Dvorkin, J. (2009) The Rock Physics Handbook (2nd edition). Cambridge University Press, Cambridge, UK. 511p.
  30. Mindlin, R.D. (1949) Compliance of bodies in contact. Journal of Applied Mechanics, v.16, p.259-268.
  31. Misaghi, A., Negahban, S., Landro, M. and Javaherian, A. (2010) A comparison of rock physics models for fluid substitution in carbonate rocks. Exploration Geophysics, v.41, p.146-154. https://doi.org/10.1071/EG09035
  32. Moyano, B., Jensen, E.H. and Johansen, T.A., 2011. Improved quantitative calibration of rock physics models. Petroleum Geoscience, v.17, p.345-354. https://doi.org/10.1144/1354-079311-028
  33. Murphy, W.F.III, 1982. Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials. Unpublished Ph.D. thesis, Stanford University.
  34. O'Connell, R.J. and Budiansky, B. (1974) Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research, v.82, p.5719-5735.
  35. Odegaard, E. and Avseth, P. (2003) Interpretation of elastic inversion results using rock physics templates. European Associate of Geoscientists and Engineers, Expanded Abstracts, E17.
  36. Park, C. and Nam, M.J. (2014) A review on constructing seismic rock physics models based on Gassmann's equation for reservoir fluid substitution. Journal of Korean Society of Minerals and Energy Resources Engineering, v.51, p.448-467.
  37. Reuss, A. (1929) Berechnung der Fliessgrenzen von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, v.9, p.49-58. https://doi.org/10.1002/zamm.19290090104
  38. Russell, B. (2013) A Gassmann-consistent rock physics template. CSEG Recorder, v.38, p.22-30.
  39. Simm, R. and Bacon, M. (2014) Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press, Cambridge, UK. 271p.
  40. Voigt, W. (1910) Lehrbuch der Kristallphysik, Leipzig und Berlin: B.G. Teubner, 964p.
  41. Wu, T.T. (1966) The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids Structures, v.2, p.1-8. https://doi.org/10.1016/0020-7683(66)90002-3
  42. Yin, H. (1992) Acoustic velocity and attenuation of rocks: Isotropy, intrinsic anisotropy, and stress induced anisotropy, Ph.D. thesis, Stanford University.
  43. Zimmerman, R.W. (1991) Elastic moduli of a solid containing spherical inclusions. Mechanics of Materials, v.12, p.17-24. https://doi.org/10.1016/0167-6636(91)90049-6